
Find out more and buy your ticket at
world.phparch.com

WordPress, Drupal, Joomla!, Magento, Zend Framework, Symfony, Laravel, more...

November 10 -14th 2014

Washington, D.C.

Five Amazing Keynotes...

Luke Stokes
Co-founder and CTO of

FoxyCart.com

Angela Byron
Drupal

Core Committer

Andrew Nacin
WordPress

Lead Developer

Jeffrey McQuire
Open Source Evangelist

at Acquia

The Greatest Panel on Earth!
We will have key people representing seven of the
biggest PHP frameworks and applications: WordPress,
Drupal, Magento, Joomla!, Symfony, Laravel, and Zend
Framework all together in one place to answer all your
most difficult questions!

2

I ANFORMATION SSURANCE

ANALYZE | MITIGATE | MAINTAIN

Purchasing Power

ALSO INSIDE

Editorial:
Embracing New

Challenges

Education Station:
Instagram Mashups the

Easy Way in PHP

Confi dent Coder:
Make the Reasons

Overwhelming

Laravel:
Deploying Applications

Part 1: Homestead

fi nally{}:
On Conferences

www.phparch.com September 2014
VOLUME 13 - ISSUE 9

What is New in Magento 2?

High-Performance Magento
in the Cloud

Easy WordPress Dev Environments
with Vagrant and Ansible

The State of Symfony

php[architect] m
agazine Sep

tem
b

er 2
0

14
P

u
rch

asin
g

 Pow
er

Volum
e 13

 Issue 9

FREE SAMPLE ARTICLE

Easy WordPress Dev Environments
with Vagrant and Ansible

Find out more and buy your ticket at
world.phparch.com

WordPress, Drupal, Joomla!, Magento, Zend Framework, Symfony, Laravel, more...

November 10 -14th 2014

Washington, D.C.

Five Amazing Keynotes...

Luke Stokes
Co-founder and CTO of

FoxyCart.com

Angela Byron
Drupal

Core Committer

Andrew Nacin
WordPress

Lead Developer

Jeffrey McQuire
Open Source Evangelist

at Acquia

The Greatest Panel on Earth!
We will have key people representing seven of the
biggest PHP frameworks and applications: WordPress,
Drupal, Magento, Joomla!, Symfony, Laravel, and Zend
Framework all together in one place to answer all your
most difficult questions!

2

I ANFORMATION SSURANCE

ANALYZE | MITIGATE | MAINTAIN

http://world.phparch.com/?utm_source=mag0914&utm_medium=pdf&utm_campaign=sample

FEATURE

2 | September 2014 phparch.com

Easy WordPress
Dev Environments
with Vagrant and Ansible
Jason A. Lefkowitz

One of the evergreen hassles of Web
development comes from the fact that the
developer's work is useless without a server
to run it on. From this springs a thorny
question: Where, exactly, should you be
doing your work? On the same server that
hosts your live site? On a separate staging
or development server somewhere? On
your local PC?

2 | September 2014 phparch.com

Requirements

Requirements:
• VirtualBox - https://www.virtualbox.org
• Vagrant - http://www.vagrantup.com
• Ansible - http://www.ansibleworks.com

Related URLs:
• Hashicorp - http://www.hashicorp.com
• Vagrant Cloud - https://vagrantcloud.com
• Canonical Ubuntu images - http://cloud-images.ubuntu.com/vagrant/
• Creating a Base Box - http://docs.vagrantup.com/v2/boxes/base.html
• Vagrant Provisioners -

https://docs.vagrantup.com/v2/provisioning/index.html
• YAML - http://www.yaml.org
• Vagrant ansible.limit workaround -

https://github.com/mitchellh/vagrant/issues/3096#issuecomment-37237086
• Ansible Modules - http://www.ansibleworks.com/docs/modules.html
• APT Module - http://www.ansibleworks.com/docs/modules.html#apt
• Service Module - http://www.ansibleworks.com/docs/modules.html#service
• MySQL User - http://www.ansibleworks.com/docs/modules.html#mysql-user
• MySQL DB - http://www.ansibleworks.com/docs/modules.html#mysql-db

phparch.com
phparch.com
https://www.virtualbox.org
http://www.vagrantup.com
http://www.ansibleworks.com
http://www.hashicorp.com
https://vagrantcloud.com
http://cloud-images.ubuntu.com/vagrant/
http://docs.vagrantup.com/v2/boxes/base.html
https://docs.vagrantup.com/v2/provisioning/index.html
http://www.yaml.org
https://github.com/mitchellh/vagrant/issues/3096#issuecomment-37237086
http://www.ansibleworks.com/docs/modules.html
http://www.ansibleworks.com/docs/modules.html#apt
http://www.ansibleworks.com/docs/modules.html#service
http://www.ansibleworks.com/docs/modules.html#mysql-user
http://www.ansibleworks.com/docs/modules.html#mysql-db

 phparch.com September 2014 | 3

Different developers have different needs, but, generally speaking, we can describe a few
characteristics of the Ideal Development Environment:

• Private: The only people who should be able to see your work are you and your team.
Nothing should be exposed to the world until you expose it.

• Homogeneous: The development environment should be as similar as possible to the
deployment environment to avoid problems both while developing ("I don't understand
why Jane is having problems; it works fine on my machine!") and deploying ("What do you
mean the app requires an Apache module our host won't install?").

• Repeatable: Having to make all these decisions from scratch every time you start a new
project is annoying; it would be much better to just have a baseline environment and then
be able to point to it and say, "Give me another one of those, bartender."

• Easy: Setting new environments up and tearing old ones down should be as
straightforward as possible to minimize the amount of time developers spend getting ready
to code and to maximize the amount of time spent actually coding.

In the past, setting up a development environment that met all of these criteria was difficult, but
a new generation of tools for system administrators has emerged. Happily, these same tools can
be used by developers to manage development environments easily and efficiently.

phparch.com

4 | September 2014 phparch.com

Easy WordPress Dev Environments With Vagrant and Ansible

What You'll Need
The approach we're going to use requires that three open-source software packages be

installed on your workstation (see Related URLs):

• VirtualBox
• Vagrant
• Ansible

VirtualBox is desktop virtualization software. It lets you run a complete virtual server,
implemented entirely in software, on your desktop.

Vagrant is a tool for encapsulating virtual environments. It lets you "freeze" the state of a
VirtualBox VM -- all its installed software and configuration -- into a file that can be shared with
others or used as the starting point for other VMs.

Finally, Ansible is configuration management software. It lets you create a simple text file, called
a "playbook," that specifies the steps required to set up a new machine and then run them locally
or remotely against any machine you wish.

Vagrant: Setting Up the Base Box
Let's get started!

The first step is to set up a Vagrant "box." Vagrant needs an existing VirtualBox VM to use as its
starting point. So we need a "base box" -- either our own VM snapshot or somebody else's.

The people behind Vagrant, Hashicorp, have started a free companion service called Vagrant
Cloud that makes finding a good base box (or sharing your own) easy. Other sources for base
boxes exist as well -- for example, Canonical offers pre-rolled base boxes using the server
version of their Ubuntu Linux distribution. See Related URLs for the links.

Ubuntu Server is a solid Debian-based distribution, so for this exercise, we'll use the base box
built on the 64-bit version of their latest long-term support (LTS) release, Ubuntu 14.04 (Trusty
Tahr), at the following URL:

http://cloud-images.ubuntu.com/vagrant/trusty/ \
 current/trusty-server-cloudimg-amd64-vagrant-disk1.box

When you're setting up "real" development environments, you'll want to start with a base box
that matches your deployment environment as closely as possible; most common systems have
base boxes already available, or for maximum fidelity, you can create your own base box so that it
matches all your deployment environment's little project-specific quirks. See Related URLs for the
Vagrant documentation link.

When you've found a base box, you register it with Vagrant with the vagrant box add
command. This fetches a copy of the base box from the URL you give it, stashes the copy on
your hard drive for future re-use, and registers the copy in Vagrant with a short handle of your
choosing.

phparch.com

 phparch.com September 2014 | 5

Easy WordPress Dev Environments With Vagrant and Ansible

To add our base box using the handle trusty64 and use the URL for this base box as of this
writing, the command would be (all on one line):

vagrant box add trusty64 http://cloud-images.ubuntu.com/vagrant \
 /trusty/current/trusty-server-cloudimg-amd64-vagrant-disk1.box

Note that boxes distributed via Hashicorp's Vagrant Cloud service get a little bit of extra love here -- they
can be passed to the vagrant box add command with just the handle assigned to them on Vagrant
Cloud rather than needing the full URL.

Vagrant: Meet the Vagrantfile
Now that we have a base box to work with, we can use Vagrant to set up a VM instance for us

based on it.

To begin, create an empty directory on your local file system, and change directories so that the
newly created directory is your working directory.

Now you need to prepare this directory to host a Vagrant VM. This is simple, run the following
command:

vagrant init

This command creates a new file in that directory with the name Vagrantfile. The Vagrantfile is
the configuration file for a Vagrant VM. Vagrantfiles are written in Ruby, which can seem daunting
if you're not a Rubyist. But fear not! You only need to make a couple of small changes to the
Vagrantfile, and none require any real Ruby knowledge.

The first thing to do is link this Vagrantfile to a registered base box so Vagrant knows which one
to use as this VM's initial template.

Look for this line near the top:

config.vm.box = "base"

All you need to do to use the Ubuntu image we registered above is change the value of config.
vm.box from base to whatever handle you registered the base box under:

config.vm.box = "trusty64"

Save the Vagrantfile. Presto! You're ready to spin up a new VM based on that Ubuntu base box.
Enter the following command:

vagrant up

... and Vagrant will work its magic. When the VM is up and running, you'll be returned to the
shell prompt.

"OK," I hear you thinking, "but how do I know it actually worked?" Enter this command:

vagrant ssh

phparch.com

6 | September 2014 phparch.com

Easy WordPress Dev Environments With Vagrant and Ansible

... and you will shell into your new VM as the user "vagrant." Vagrant handles all the details of
creating the user account, giving it passwordless sudo privileges, and setting up SSH when you
run vagrant up, so you can just jump right in.

Now let's spin the VM down. First, make sure to exit so that your shell prompt is back on your
local workstation instead of the VM. Then enter:

vagrant destroy

You'll be given a prompt:

Are you sure you want to destroy the 'default' VM? [y/N]

Answer "y" for "yes" and Vagrant will tear down (destroy) the VM. (If you find yourself doing this
a lot, you can turn off the prompt with an argument at the command line: vagrant destroy -f.)

Destroying a VM sounds pretty final, but it's not. All it means is that the files associated with
maintaining the VM's state are deleted, preventing them from cluttering up your hard drive. You
can spin the VM up again in a 100% clean state just by running vagrant up again. (Go ahead, try
it.)

What if you want to spin the VM down but hold onto its state so you can pick up later where you
left off? Instead of vagrant destroy, you'd enter

vagrant halt

to power it down gracefully or

vagrant suspend

to put it into suspend mode. In either case, vagrant up will turn its lights back on later.

Vagrant: Provisioning with Ansible
Now we have a nice clean VM with Ubuntu installed. But by itself, that's not particularly useful.

We want a development environment, not a tabula rasa.

The way we get there is by using Vagrant's support for provisioners. A provisioner is software
that tells Vagrant what to do with a particular VM after making a clean copy of its base box.
When you run vagrant up, Vagrant consults the provisioner and follows whatever instructions it
provides. Vagrant supports many provisioners, but we're going to use Ansible, so make sure to
install it on your machine before we proceed.

Digression: Why Ansible?
"But Vagrant supports lots of different provisioners," I hear you asking, "including ones I've

heard of before, like Chef and Puppet. It even supports provisioning via raw shell scripts. So what
makes Ansible preferable to all these others?"

The answer is that, for people whose work is more developer-like than systems administrator-
like, Ansible strikes a very appealing balance between simplicity and power. Chef and Puppet
offer more power, but that power comes at the cost of complexity; some configurations require

phparch.com

 phparch.com September 2014 | 7

Easy WordPress Dev Environments With Vagrant and Ansible

you to set up a "master server" to handle provisioning, for instance, which is a lot of overhead
when you're only worried about setting up one-off development environments rather than fleets
of thousands of Amazon EC2 instances. And for most PHPers, configuring environments in either
tool will require learning a new programming language; Puppet environments are defined using
their own proprietary language, while Chef uses a subset of Ruby. (That makes Chef preferable to
Puppet for full-time Rubyists, but for a PHPer, it's a case of six of one, a half a dozen of the other.)

Ansible, on the other hand, requires no master server or other infrastructure; it can provision
images right from your workstation, and it does so over good old reliable SSH, so the images
don't need to have any client software installed before you can start working on them. And
Ansible's configuration language isn't really a language at all; it's just plain text files formatted
in YAML, with some basic additions bolted on like looping constructs and variable interpolation
to make repetitive tasks less so. All of this adds up to a system that has all the power you need,
without you having to take on a second career as a sysadmin just to make use of it.

Enough Digression; Let's Get Back to Provisioning
So we want to use Ansible to configure a Vagrant box. How exactly do we go about doing that?

Since all the configuration for a Vagrant VM happens in its Vagrantfile, we'll need to edit it to
connect it to Ansible. You'll have to install Ansible on your system. Then, on the line just below
your config.vm.box directive, add this:

config.vm.network :private_network, ip: "192.168.50.50"

This tells Vagrant that you want this VM set
up with a static IP address, 192.168.50.50,
rather than having one dynamically allocated
when it's created. (The actual IP address can
be anything in your local network, so if you've
already assigned 192.168.50.50, feel free to
change it.)

Next in Listing 1 we add a block of
commands near the bottom, just before the last end statement that closes out the Vagrantfile.

This tells Vagrant that we're using Ansible as our provisioner and sets up a few configuration
variables:

• ansible.verbose tells Vagrant how much detail it should show you when running your
Ansible instructions. You'll want this set to at least the lowest level of verbosity: "v". For
more detail, just add more "v"s, up to "vvvv".

• ansible.inventory_path is the path to our inventory file, a text file that tells Ansible where
it can find the systems we expect it to manage. This path is relative to the location of the
Vagrantfile.

• ansible.playbook is the path to our playbook, the text file that Ansible will read to see how
we want to configure the VM. It's also relative to the location of the Vagrantfile.

• ansible.host_key_checking tells Ansible whether or not it should pitch a fit if the host
key of the VM is not present in your SSH list of approved keys when it tries to connect to it.
These fits can stop the image from provisioning properly, so we disable the check. (Strict
key checking is an important security precaution when connecting to live servers, but since
we're working entirely on throwaway VMs set up within our own workstation here, we can
safely turn it off.)

LISTING 1

01. config.vm.provision "ansible" do |ansible|
02. ansible.verbose = "v"
03. ansible.inventory_path = "vagrant-inventory"
04. ansible.playbook = "setup.yml"
05. ansible.host_key_checking = "false"
06. ansible.limit = "all"
07. end

phparch.com

8 | September 2014 phparch.com

Easy WordPress Dev Environments With Vagrant and Ansible

• ansible.limit is there to work around a limitation of the Ansible provisioner that shipped
with with recent versions of Vagrant which ties itself into knots if the target machine is
referred to by IP address rather than having the same name as specified in the Vagrantfile.
Setting this value to "all" tells the provisioner just to read all the IP addresses specified in the
inventory file (see below) and use those. For more information, see Related URLS.

Ansible: The Inventory File
As noted above, Ansible uses an inventory file to let you specify which systems you want to set

up with a given configuration. Inventory files pull systems together into groups, with each group
having its own name.

Create an empty file in the same directory as the Vagrantfile with the name "vagrant-inventory"
(or whatever value you assigned to ansible.inventory_path in the Vagrantfile).

A basic inventory file is extremely simple:

[devboxes]
192.168.50.50

This tells Ansible that we have a group of systems we've given the name "devboxes," and that
group has one system in it, which can be found at 192.168.50.50. If you assigned a different static
IP address in the Vagrantfile, use that IP address instead.

(This example is pretty simple, but it also gives you a glimpse of the potential power of Ansible.
Ansible can do much more than provision a single machine -- it can run your provisioning
playbook against however many machines you want, setting them all up with exactly the same
recipe, just by listing the IP addresses of all those machines in the devboxes group and telling
Ansible to run the playbook directly. So the time you spend tuning your setup recipe for your dev
environment can be easily repurposed to become a setup and maintenance
recipe for all those VPSes you have floating around in the
cloud.)

That's it for the inventory file!

Ansible: The Playbook
Now we need that Ansible playbook we pointed the

Vagrantfile at to actually exist.

Create another new file in the same directory and name it setup.yml. There's nothing
magic about this name; the only important thing is that it matches the value you gave to
ansible.playbook in the Vagrantfile.

Unlike Vagrantfiles, Ansible playbooks don't require knowledge of a programming language;
they're just text files in the easy-to-read YAML format.

Let's get our feet wet with a simple playbook, as shown in Listing 2.

A YAML document always begins with three dashes, which you can see on line 1.

Line 2 starts with a single dash, which in YAML means that this is an item in a list. In an Ansible
playbook, a list item is an associative array described in key:value format. List items can also

LISTING 2

01. ---
02. - hosts: devboxes
03. remote_user: vagrant
04. sudo: yes
05. tasks:
06. - name: update apt cache
07. apt: update_cache=yes

phparch.com

 phparch.com September 2014 | 9

Easy WordPress Dev Environments With Vagrant and Ansible

contain lists of their own, as we'll see. The key in
line 2 is hosts, and the value is devboxes. This tells
Ansible that the instructions that follow are to be run
against all systems included in the inventory file's
group devboxes. (Remember, we only listed one IP
address in the inventory file, the one for our Vagrant
box, so this will only run against that IP -- but there's
nothing stopping us from listing more if we needed
to.)

Line 3 specifies the SSH user name that Ansible
should use when it attempts to shell into those
systems. Vagrant already set up a user named
vagrant for us, so we just use that.

Line 4 tells Ansible to try to elevate its privileges
via sudo after logging in. This ensures that it can do
things that require root access without permissions
problems.

Line 5 sets a new key: tasks. Unlike previous keys,
this one will take as its value not a simple string but
a nested list. This list is where you specify the actual
things you want Ansible to do to provision this
system and the order in which it should do them.

So far, the list has only one entry:

- name: update apt cache
 apt: update_cache=yes

In an Ansible playbook, each thing you want
Ansible to do is called a task, and each task is an
associative array with at least two keys. The first,
name, is just a label to let you follow what Ansible
is doing as it reports its progress. The second is the
name of an Ansible module -- a bit of code that tells
Ansible how to connect to various different systems
and software packages.

Ansible comes with a rich library of modules.
Here, we're using the module called apt,
which lets us interface with Ubuntu's package
manager. The value assigned to the apt key,
update_cache=yes, tells apt to refresh its local cache
of available packages. This is equivalent to running
apt-get update at a console prompt.

Now let's try running this playbook. Tear down the
VM if you haven't already:

vagrant destroy

Then enter:

vagrant up

You'll see the output you saw when you spun up
the VM earlier, but now, after the output you saw
before, there will be a new section that begins
"Running provisioner: ansible..." and lists the result
of each task in the playbook.

Stupid Ansible Tricks
The rest of the process of developing your

playbook is just a matter of figuring out what
things you normally do to set up a development
environment and then translating those things into
Ansible tasks.

We'll need a Web server, for instance. So set up the
following task:

- name: install Apache
 apt: pkg=apache2 state=latest

This task tells Ansible to use apt to install the latest
available version of Apache 2. Apt will automatically
install Apache's dependencies, so we don't have to
worry about installing them manually.

We'll want PHP, along with some commonly used
libraries. We can do that with the apt module, too,
as shown in Listing 3.

Here we see a slightly different syntax for the apt
module -- instead of specifying a single package
name in the pkg= parameter, we specify instead a
variable, {{ item }}. This tells Ansible that we're
going to give it a list of package names and that it
needs to iterate over that list,

LISTING 3

01. - name: install PHP, with batteries
02. apt: pkg={{ item }} state=latest
03. with_items:
04. - php5
05. - php5-cli
06. - php5-mysql
07. - php5-curl
08. - php5-gd
09. - php5-sqlite
10. - php5-xmlrpc
11. - php5-imagick
12. - php5-xcache

phparch.com

10 | September 2014 phparch.com

Easy WordPress Dev Environments With Vagrant and Ansible

installing them one by one. We then
put that list of package names as the
value of a new key, with_items.

What next? Let's say that we want to
install MySQL, set the password for
the MySQL root user, and then have
Ansible use that root user account to
create an empty MySQL database for
us to use with WordPress (See Listing
4).

The first task uses the familiar apt
module to install the latest versions of
both the MySQL client and server.

The second task uses another
module, service, to check whether
or not the MySQL service is up and
running (state=started). If it isn't, the
module will start it; if it is, the module
does nothing.

(Ansible modules are designed to be
idempotent -- safe to run multiple times
without the end result being different.
So you don't have to worry about
multiple MySQL processes being
spawned by this task.)

The third task uses another new
module, mysql_user, to set the password of the root MySQL user to "mysql". name=root specifies
the name of the user account we want to work with (in this case, "root"). password=mysql sets
the value of that account's password. host=$item tells Ansible that we're going to provide a
list of host names and that it should check for a user account named root at each one. Finally,
state=present tells Ansible to create a user account named root at the given host name with the
specified password if one does not already exist.

The fourth and final task uses another new module, mysql_db, to actually create our empty
database. The login_user and login_password parameters tell Ansible to log into MySQL as
root to create the database; the other parameters specify the database name, character set, and
collation. (state=present tells Ansible to create this database if it does not already exist.)

Now let's fetch the WordPress software itself and install it, as shown in Listing 5.

First, the get_url module will download the file at the URL specified in the url parameter and
save it in the directory specified in the dest parameter. In this case, we put it in /tmp.

The next command ensures that the unzip command is installed via apt. Once it is installed,
Ansible can then unpack that ZIP archive and move it into the right place. The last two steps use
another module, command, to extract and move the files. The command module simply runs any
command you'd run in a shell.

LISTING 4

01. - name: install MySQL client and server
02. apt: pkg={{ item }} state=latest
03. with_items:
04. - python-mysqldb
05. - mysql-client
06. - mysql-server
07.
08. - name: start MySQL service, if not started already
09. service: name=mysql state=started
10.
11. - name: setup MySQL root user password
12. mysql_user: name=root
13. password=mysql
14. host={{ item }}
15. state=present
16. with_items:
17. - $ansible_hostname
18. - 127.0.0.1
19. - ::1
20. - localhost
21.
22. - name: setup empty database for WordPress
23. mysql_db: name=wordpress
24. encoding=utf8
25. collation=utf8_general_ci
26. state=present
27. login_user=root
28. login_password=mysql

phparch.com

 phparch.com September 2014 | 11

Easy WordPress Dev Environments With Vagrant and Ansible

The Big Idea
As you work through the steps needed to turn a blank VM into a full-featured development

environment, your playbook grows. Eventually, it has a complete list of steps, and you can
bootstrap a new dev VM with a simple vagrant up.

But what do we gain by doing it this way rather than by hand?

One advantage is that you only have to go through this process once. When you're done, you'll
have a playbook that lays out the whole process. And when you move on to your next project,
you can just copy the files you created here -- the Vagrantfile, setup.yml, and vagrant-inventory --
into a new directory, change the IP address in the Vagrantfile and in vagrant-inventory, and you've
got a development environment ready to go for that project.

And because all the files we've used are text files, you can manage and share them with a version
control system like Git. Others can then clone your setup and tweak it as needed for their own
projects.

Allow me to demonstrate. There's not enough space in this article to actually list out the full
contents of a complete playbook that can handle every single step required to bootstrap a
WordPress dev environment. But we can get around that! I've posted my own playbook to
GitHub https://github.com/jalefkowit/vagrant-ansible-wordpress so you can clone it and use it
as the starting point for your own experimentation.

Ansible is a very powerful tool; this tutorial has only scratched the surface of what it can do. But
I hope it has given you a sense of how you can use it to automate away some of the most tedious
parts of starting a new project. And that should allow you to focus on doing what you do best:
writing beautiful PHP.

LISTING 5

01. - name: download WordPress
02. get_url: url=http://wordpress.org/latest.zip dest=/tmp/
03. - name: install unzip
04. apt: pkg=unzip state=latest
05. - name: unzip WordPress
06. command: unzip /tmp/latest.zip -d /tmp/
07. - name: move WordPress directory into web root
08. command: mv /tmp/wordpress /var/www/

JASON A. LEFKOWITZ is the founder and president of Rogue Repairman Productions in
Alexandria, Virginia, a consulting firm that provides technology that doesn't suck to
progressive advocacy groups, campaigns and non-profit organizations. He has been
developing in PHP for nearly fifteen years, and has the therapy bills to prove it.

Twitter: @jalefkowit

 phparch.com September 2014 | 11

phparch.com
https://github.com/jalefkowit/vagrant-ansible-wordpress
http://twitter.com/jalefkowit
phparch.com

magazine

books

conferences

training

phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/magazine/2014-2/september/?utm_source=mag0914&utm_medium=pdf&utm_campaign=sample

	Cover
	Easy WordPressDev Environmentswith Vagrant and Ansible
	Want More?

