
FREE Article!

2 | February 2015 www.phparch.com

Swift for PHP Developers
Ricky Robinett

If you haven’t heard, Swift is Apple’s new programming
language that developers can use to build native iOS and
OSX apps. When Apple announced Swift this summer, I was
immediately intrigued by the prospect of a new way to build
apps for iOS. I started my programming career as a PHP
developer, but a couple years into my life as a developer
I started taking on mobile development work. If you’ve
ever talked to someone who’s had to learn Objective-C,
you’ve probably heard them use words like “difficult,”
“challenging,” and maybe even “painful.” For me, learning
Objective-C was all of those things. Once I started playing
with Swift I realized that it was the beginning of a new era.
It is much easier for PHP developers to learn, and it just
may expose the world of mobile development to a whole
new batch of developers. In this article, I’ll give you a short
introduction to Swift, then we’ll get our environment set up
so we can start writing Swift code and dive into Swift from
a PHP developer’s perspective. We’ll explore the parts that
will make you jump up and down with joy and the parts that
may catch you by surprise.

FEATURE

DisplayInfo()

Other Software:
•	 Xcode 6.0+

Related URLs:
•	 Xcode - https://developer.apple.com/xcode/downloads/
•	 The Swift Programming Language - http://phpa.me/swift-dev-guide

phparch.com
https://developer.apple.com/xcode/downloads/
http://phpa.me/swift-dev-guide

 www.phparch.com February 2015 | 3

A Brief History
Before we get too far into Swift, let’s take a brief

look at the history of native mobile development
for iOS and understand why Swift came to be.
Prior to the release of Swift, if you wanted to build
native iOS apps the Apple way you had to use
Objective-C. Many developers (like myself) were
first exposed to Objective-C in the context of iOS,
but the language was actually created in 1983.
Not surprisingly, a language that is over 30 years
old carries certain baggage with it. Objective-C is
verbose and although it’s great for many things it
can be painful at times. Apple created Swift as a
reimagining of Objective-C to relieve some of that
baggage—an “Objective-C without the C.” The end
result is a more modern language that is easier for
new developers to pick up.

Laying the Foundation
Before we can start writing Swift code we need

to discuss two major dependencies. First, you’ll
need a computer running OSX. Don’t have one
handy? Don’t stop reading! Getting value out
of this article doesn’t require actually running
code—it’s just a little more fun if you can. Second,
we’ll need the latest version Xcode (see Related
URLs). Wait, what?!?! As PHP developers, we’re
used to writing our code in a text editor of choice
(#vim4lyfe!). Unfortunately, that’s not how it works
with Swift. As we navigate into the Apple ecosystem
we’re going to have to do some things their way.
But don’t worry—Xcode provides a lot of great
features that will help us in our path towards mobile
development.

phparch.com

4 | February 2015 www.phparch.com

Swift for PHP Developers

Once you have Xcode installed, launch it and click “Get started with a playground.”

Playgrounds are a quick, easy, and interactive way to write Swift code and see the results in real
time. If you’ve used the Boris REPL for PHP, this type of interactive prompt for writing code will
probably seem familiar. We’ll need to set a name for a playground; let’s call it “SwiftForPHPDevs.”
We’ll also need to pick a platform, but in our case this isn’t as important. Since we’re excited
about mobile, let’s stick with “iOS.” Our playground will come pre-populated with a “hello
world” app:

FIGURE 1 Getting started with Playground

FIGURE 2Hello World

phparch.com

 www.phparch.com February 2015 | 5

Swift for PHP Developers

On the left side is our code, on the right side the output for the corresponding line in code.
Switch out “Hello, playground” to “Hello, Swift” and watch the content on the right update.
We’ve now written our first Swift code! Feel free to take a moment and do your happy dance.
Now that we’ve got our foundation in place, let’s really start looking at Swift as a language.

You Remind Me of Home
Many things about Swift will feel familiar and comfortable to PHP developers—like a warm

blanket of 0s and 1s. The easiest way to explore is for us to start writing some code together,
so you can see firsthand what I’m talking about. For the sake of creating something somewhat
coherent we’ll be writing Swift about (Taylor) Swift. If you don’t know much about (Taylor) Swift,
have no fear! You’ll learn as you work through this article. Kicking off with the basics, let’s create a
new variable in our playground called name and set it to the string “Taylor Swift”:

var name = "Taylor Swift"

We’ll talk a bit more about variable types in Swift vs. PHP later, but right now this should feel
pretty good. We may miss our dollar signs, but this code isn’t too far off. You’d probably be
worried if we were one line in and the code was already scary. Let me give a taste of what this
would have looked like in Objective-C:

NSString *name = @"Taylor Swift";

Ewww… do you understand why I’m so excited about Swift now? Let’s create two more
variables. We’ll call one ageFeeling and set it to the string "22". The other will be called albums
and set to the array of all the albums Taylor Swift has released:

var ageFeeling = "22"
var albums = ["Taylor Swift", "Fearless", "Speak Now",
 "Red", "1989"]

We’re still working through the basics, but I hope you’re starting to feel comfortable writing
Swift code in Xcode. While we’re setting some variables, let’s take a look at constants. In PHP, we
set constants using the define function. In Swift, we can set a constant using the let keyword.
Let’s create a new constant called gettingBackTogether and set it to false by using let
instead of var:

let gettingBackTogether = false

Now that we’ve got some basic variables in place, we can quickly take a look at comparison
operators. In Swift we have the following comparison operators: ==, !=, >, <, >=, <= (Wondering
where === is? You’ll realize why it’s missing a bit later.) To try these out, we can create an if
statement to check to see if gettingBackTogether is equal to false. If so, we’ll output “We are
never ever getting back together”:

if gettingBackTogether == false {
 println("We are never ever getting back together")
}

phparch.com

6 | February 2015 www.phparch.com

Swift for PHP Developers

You’re probably
wondering where we can
view the output of our
println. We need to
open the Assistant Editor
to be able to see console
output. In the menu bar,
go to View -> Assistant
Editor -> Show Assistant
Editor. Now instead of
having two panes in our
playground, we have
three, the third showing
our console output (Figure
3).

Feeling good? I am! Let’s keep pushing forward,
because there’s still more fun stuff in here. One of
my favorite things in PHP is the foreach loop. It’s a
really convenient tool to iterate over an array. With
Swift we can achieve something similar like this:

for album in albums {
 println(album)
}

If you left the Assistant Editor open you’ll be able to
see each album name in the console. If you closed
the Assistant Editor, now is a good time to open it
back up, since we’ll be using it throughout this post.

While we’re looking at arrays, let’s create a
quick associative array (in Swift these are called
dictionaries) and then see how to iterate over it:

var awards = [
 "MTV Video Music" : 2,
 "Billboard Music" : 13
]

Here we have a non-comprehensive collection
of awards Taylor Swift has won (there’s a whole
Wikipedia article about her awards, if you’re
interested). We can iterate over a dictionary like this:

for (award, total) in awards {
 println(award)
 println(total)
}

Having Class
You may have noticed that right now we have

a collection of random code snippets that seem
somewhat related. In PHP, we probably would
want to organize some of this code into an object.
Lucky us, because in Swift we can do the same. Let’s
create a new class called Person:

class Person {
 var name = "Taylor Swift"
 var ageFeeling = "22"
}

No surprises here. Of course when PHP developers
start thinking about class, we immediately start
thinking about the visibility of our properties and
methods (public, protected, or private). In Swift,
we have public and private access controls as well,
which operate similarly. We have another access
control called internal, but don’t mistake it for
PHP’s protected status. Protected ties security to
inheritance, something the designers of Swift have
opted not to emulate.

Even though we don’t have inheritance-based
visibility in Swift like we do in PHP, you can create
classes that inherit from another class. We all know
that Taylor Swift is truly in a class of her own. If we
wanted our code to better reflect the real world we
could create a new TaylorSwift class that inherits
from our person class:

class TaylorSwift: Person {

}

FIGURE 3Console

phparch.com

 www.phparch.com February 2015 | 7

Swift for PHP Developers

What if we wanted to do some initialization when
we instantiate a new instance of our class? In PHP
we would create a ___construct() function. I’ve
got great news to you—with Swift, we can do this by
setting an init() method for our class:

class Person {
 init() {
 println("initializer called")
 }
}

var person = Person()

Doing things at the time of creation is great, but
sometimes we need to take action when an object
is destroyed. In PHP the ___destruct() function
gets called when this happens. In Swift, we can do
the same with deinit:

class Person {
 init() {
 println("initializer called")
 }

 deinit {
 println("deinitializer called")
 }
}

For now, let’s set aside the code related to our
objects and take a look at the other side of the
coin—the parts of Swift that aren’t like PHP.

I Knew You Were Trouble
So far Swift may sound a little too good to be true.

Now is probably a good time to show you some of
the things that may make Swift feel more like that
new pair of shoes you have to wear for a couple
weeks before they stop giving you blisters. Just
remember, much like those shoes, putting in the
work to get comfortable will be worth it in the end.

One thing that may initially trip you up is variable
types. Unlike PHP, Swift is a strongly typed
language. What exactly does that mean? Every
variable we create in Swift is created as a certain
type of variable (for example: String, Integer,
Array). We need to interact with our variables in the
way that is appropriate to their type.

Before, we were taking advantage of Swift’s ability
to implicitly create variables with the correct type
based on their value. Once we start working with
those variables we created, we need to make
sure we’re aware of their type. Confused? I was
at first, too. Let me show you some code to help
demonstrate exactly what I’m talking about. We’re
going to create a new variable age and set it to the
integer 24 (notice: no quotes around our value):

var age = 24

We can see the kind of issues we’ll experience with
type by creating a simple conditional statement to
see if age is equal to ageFeeling. Oh no! In Figure
4, Xcode is telling us we have an error.

This error is happening because we’re trying
to compare an integer with a string. In order to
compare two variables they need to be the same
type. What’s that old saying about apples and
oranges? In this case we can convert age to a string
and our conditional will no longer error out:

if String(age) == ageFeeling {
 println("ya")
}

Classes can have no more than one
denitializer per class. deinit does
not take any parameter and is written
without parentheses.

FIGURE 4Type Error

if(age == ageFeeling) {
	 println("ya")
}

!

phparch.com

8 | February 2015 www.phparch.com

Swift for PHP Developers

Another situation where typing is important is when we’re writing functions. Let’s create a basic function to
see this in practice:

func sing(feeling: String) -> String {
 return "I don't know about you but I'm feeling "
 + feeling + "!"
}

We’ve created a function called sing that accepts a feeling and returns some song lyrics about that feeling.
Because Swift is strongly typed, when we create a function we need to explicitly state the type for the
arguments of our function and the value we’re going to be returning. In this case, our argument is a String
and we’re returning a String.

What happens if we call this function with an integer instead of String? Again (Figure 5) we’ll get an error.

Are you starting to see how working in a strongly typed
language can be a bit difficult to get used to? It’s OK. Like
those new shoes we talked about earlier, it’ll start to feel
more natural with time. For now, let’s fix the error when
we’re calling our sing function by passing it a string:

println(sing(ageFeeling))

Typing is a very distinct way that Swift is different than PHP; now let’s talk about something a bit more
abstract—style. It’s hard to talk about Swift without talking about style. Pretend like it’s Throwback Thursday
as we take a trip back to the very first variable we created in Swift:

var name = "Taylor Swift"

Notice something missing? If you’ve made it this far without yelling “WHERE ARE MY SEMICOLONS?!?”
then I’m impressed. If you’ve subconsciously been adding semicolons to the end of every line then I’m also
impressed. In Swift, semicolons are optional. Even though semicolons are optional, if you want to write code
the “Swift way” you’re going to have to get used to dropping the semicolons.

Similarly, let’s revisit the first conditional statement we wrote:

if gettingBackTogether == false {
 println("We are never ever getting back together")
}

If you’re like me, it takes a lot of willpower to not add parentheses here. The good news is that if you add
parentheses this code it will still work. The bad news is that adding parentheses will probably drive your
Swift developer friends crazy. If you’re OK driving your Swift friends crazy, go for it! But proceed with caution
and make sure there aren’t any sharp objects nearby.

FIGURE 5Another Type Error

println(sing(age))!

phparch.com

 www.phparch.com February 2015 | 9

Swift for PHP Developers

We’ve Still Got Class
Now that we’ve got an understanding of some of the basic differences between Swift and PHP, we can jump

back to classes to see the impact of those differences on how we create and interact with objects. Before,
when we were setting properties of our class we were defining their values as we set them. This is a practice
we wouldn’t want to use extensively in the real world. Let’s define some properties without setting a value:

class Person {
 var name: String
 var age: Int
}

By now you probably realize why we set up our object like this initially: I was trying to avoid the
conversation of type until a bit later. But this far into the article you’re probably starting to wrap your head
around the idea that every variable we define needs to have its type defined, either implicitly or explicitly.
When we define our property we don’t want to set a value; as a result we must explicitly state what type of
value will eventually be stored here.

Now that we’ve set up a class with a couple of properties, let’s instantiate it:

var taytay = Person()

Oops! You should notice we’re getting a “Class ‘Person’ has no initializers” error. When we set properties
for an object we need to make sure they get set when that object is initialized. We can do that with the init
function we learned about earlier. Just add this code to your object:

 init() {
 name = "Taylor Swift"
 age = 24
 }

This should resolve your error, but 99.9% of the time you don’t want to create a bunch of objects with the
same property values. Let’s update our init code where we can dynamically set these values:

 init(name: String, age: Int) {
 self.name = name
 self.age = age
 }

In this code we define that our init receives two arguments (name and age) and we set our properties to be
the values of those arguments. You’ll notice we’re using the self keyword. We’ve seen self before in PHP
objects, but in Swift it means something different. It’s very important to recognize and remember that self
in Swift is like $this in PHP. It means we’re referencing information about this specific instance of this object.

Now that we’ve defined our new initializer, we can use it to initialize our object like this:

var taytay = Person(name: "Taylor Swift", age: 24)

Notice that in Swift we used named parameters when calling this function. As you work with Swift you’ll
start getting used to name parameters.

phparch.com

Swift for PHP Developers

We’ve got an object and we can initialize it with some data. The most logical thing we’d want to
do next is to write a method for our object. We’ve already learned how to write a function in Swift;
now let’s use that knowledge to write a method for our Person class:

 func sing(words: String) -> String {
 return words + "!"
 }

The code to define our method shouldn’t be too surprising, because it’s basically identical to
writing a function outside of a class. Now that we’ve defined our method we can call it with the
following code:

var taytay = Person(name: "Taylor Swift", age: 24)
println(taytay.sing("The haters gonna hate hate hate"))

The biggest difference in calling our method is the use of the dot notation to call it. As you work
with Swift, you’ll find more and more differences from writing code in PHP. Of course, there are
many parts of Swift we didn’t cover in this article—someone could write an entire book about
Swift for PHP developers! As you start working with Swift, you’ll begin hearing about concepts
like tuples, optionals, and ARC. When these concepts come up they may seem hard, but
remember to shake off that feeling and push forward. A whole new world of adventure is ahead
of you.

What’s Next?
The world of mobile development is unbelievably exciting. In this article we laid a foundation so

you can enter that world with Swift and apply your skills as a PHP developer to this new language.
We only touched the tip of the iceberg with Swift, but I hope it was enough to get you started.

Feeling inspired to go further into the world of Swift? I’d highly recommend the official Swift
documentation (google “Swift Programming Guide” or see Related URLs) or hitting up a local
Swift meetup in your community (Brooklyn and London have especially great meetups). If you
have any questions or just want to say “hi” you can find me on twitter (@rickyrobinett) or drop me
an e-mail (ricky@twilio.com).

Twitter: @rickyrobinett

RICKY is a Brooklyn, NY based hacker currently working as a Developer Evangelist at
Twilio. He’s focused on creating fun and entertaining apps. His apps have been used by
hundreds of thousands of users and covered in multiple media outlets including: CNN,
Huffington Post, TechCrunch, Mashable, VentureBeat and the Today Show. You can
contact Ricky on twitter @rickyrobinett or via email ricky@twilio.com.

10 | February 2015 www.phparch.com

https://twitter.com/rickyrobinett
phparch.com

magazine

books

conferences

training

phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration,
API integration, devops, cloud
services, business development,
content management systems, and
the PHP community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/subscribe?utm_source=sample0215&utm_medium=pdf&utm_campaign=subscribe

	Table of Contents

