
FREE

Article!

2 | April 2015 www.phparch.com

Database Versioning with Liquibase

Object Oriented JavaScript
(Part the Second)
Jordan Kasper

FEATURE

DisplayInfo()

Related URLs:
•	 Guide to JavaScript Inheritance by Axel Rauschmeyer -

http://www.2ality.com/2011/06/prototypes-as-classes.html
•	 Douglas Crockford on private variables -

http://javascript.crockford.com/private.html
•	 ECMAScript 6 working draft for classes -

http://phpa.me/ECMA6-classes
•	 Documentation for Object.create() -

http://phpa.me/moz-js-obj-create
•	 Documentation for Function.prototype.apply() -

http://phpa.me/moz-js-apply
•	 Table of browser implementations of ES6 -

http://kangax.github.io/compat-table/es6/
•	 and ES5 -

http://kangax.github.io/compat-table/es5/)

2 | April 2015 www.phparch.com

phparch.com
http://www.2ality.com/2011/06/prototypes-as-classes.html
http://javascript.crockford.com/private.html
http://phpa.me/ECMA6-classes
http://phpa.me/moz-js-obj-create
http://phpa.me/moz-js-apply
http://kangax.github.io/compat-table/es6/
http://kangax.github.io/compat-table/es5/
phparch.com

 www.phparch.com April 2015 | 3

Recap and Reintroduction
Welcome to Part Two in our series on object-oriented JavaScript! In the March 2015

issue of php[architect] we introduced readers to the core principles of OOP and started
discussing the core nature of objects and functions in JavaScript. We moved onto
constructors, the new keyword, and different types of object members. In this issue
we’re going deeper into the prototype object to discuss prototypical inheritance and
polymorphism. We may refer to some nomenclature and syntax from Part One, so be
sure to review that content first! We’ll finish up Part Two with a peek into ECMAScript 6
and the plan for JavaScript objects in the future.

Our Dog Example
Before we jump into the meat of this article, let’s review the example code we were

working with in Part One of our series. We began with a simple Dog object constructor
and a few basic properties and methods (see Listing 1).

01. // Our Dog constructor...
02. function Dog(name) {
03. if (name) { this.name = name; }
04.
05. var alive = true; // private variable
06. this.isAlive = function() { return alive; } // privileged method
07. this.die = function() { alive = false; } // privileged method
08. }
09.
10. // Public members
11. Dog.prototype.name = "Bubbles";
12. Dog.prototype.speak = function() {
13. return this.name + " says woof";
14. };
15.
16. // Static members
17. Dog.genus = "Canis";
18. Dog.mergeBreeds = function(dogA, dogB) {
19. // TODO: implement this ;)
20. }

LISTING 1

phparch.com

4 | April 2015 www.phparch.com

Database Versioning with Liquibase

And we can see how this Dog constructor is used below. Don’t forget our discussion of closures in Part One—
that’s what makes our “privileged” methods work!

// Using our Dog object...
var v = new Dog("Vincent");
console.log(v.name); // "Vincent"
console.log(v.speak()); // "Vincent says woof"

console.log(v.alive); // undefined!
console.log(v.isAlive()); // true
v.die();
console.log(v.isAlive()); // false
console.log(v.alive); // still undefined!

// alternate syntax for `new Dog()`
var b = Object.create(Dog.prototype);
b.constructor();

// "Bubbles says woof"
// (using the default/prototype `name` property
console.log(b.speak());

And last, be sure to remember what our prototype object looks like for our Dog constructor function:

> console.log(Dog.prototype);
{
 constructor: Dog(name) {
 if (name) { this.name = name; }
 // ...
 },
 name: "Bubbles",
 speak: function() {
 return this.name + " says woof";
 },
 __proto__: Object { ... }
}

Prototypical Inheritance
Some people can grok prototypical inheritance (or “prototypal”—both are correct) by truly understanding the

word itself. Remember how we mentioned the prototype object as being the exemplar of what it means to
be a Dog (or Employee, etc.)? Consider the word “prototype” outside of a programming context. Hearing the
word in general use is clear: a prototype is what all future things of that type should look like. If we had a new
phone prototype we would expect phones in that model line to look and act like the prototype, with some small
enhancements, perhaps.

This is the nature of prototypical languages. There are no classes and instances, only objects, some created from
a blank slate (object literals, perhaps) and some created from an example object: the prototype.

Let’s continue with our Dog example: we’ve already abstracted away what is common to each Dog into a
prototype, but what if we wanted to abstract away what all animals share so that we can have Dog and Cat
instances? This is the point of inheritance in programming, and prototypical inheritance accomplishes this the
same way it accomplishes the abstraction of instances to their prototypes.

phparch.com

 www.phparch.com April 2015 | 5

Database Versioning with Liquibase

function Animal(age) {
 if (age) { this.age = age; }

 var alive = true;
 this.isAlive = function() { return alive; }
 this.die = function() { alive = false; }
}
Animal.prototype.age = 1;

function Dog(name) {
 if (name) { this.name = name; }
}

We can see how the alive private variable and its privileged methods have been moved into a new constructor
function for Animal, and that we’ve added a new age property to those instances (defaulting to 1). But right now,
our two object types (Animal and Dog) are not related. There is no connection between them, and although
we can create instances of both, a Dog is not a type of Animal in any way. To do this, we need to specify that the
prototype of a Dog derives from the prototype of an Animal:

function Animal(age) { /* ... */ }
Animal.prototype.age = 1;

function Dog(name) { /* ... */ }

Dog.prototype = Object.create(Animal.prototype);
Dog.prototype.constructor = Dog;

Dog.prototype.name = "Bubbles";
// The remainder of Dog.prototype members...

var v = new Dog("Vincent");

After we define the two constructor functions, we then set the initial Dog.prototype to be equal to a new object
that is created from the Animal.prototype. In other words, “what it means to be a Dog” starts out as “what it
means to be an Animal.” Next, we have to revert the constructor back to the Dog function itself. If we don’t, then
the Dog.prototype.constructor method will still point to the Animal.prototype.constructor! Finally, we
begin to set all of the other members of the new Dog.prototype (the name property, speak method, etc.).

The key to understanding this relationship is understanding that the prototype object is a fallback mechanism.
(I told you we’d get back to it!) Let’s say we want to get the age of a Dog: console.log(v.age);. If the current
instance object (v) does not have an age property directly
on it, JavaScript will “fall back” to the first prototype
(Dog.prototype) and look for age there. If that
object doesn’t have an age property, JavaScript
will “fall back” to the next prototype, in this case
Animal.prototype (defined by the __proto__
member of Dog.prototype). There it is! JavaScript
found a member called age on the Animal.prototype and will
use that value.

phparch.com

6 | April 2015 www.phparch.com

Database Versioning with Liquibase

This structure is referred to as the prototype chain and falling back to successive prototypes is the mechanism
by which JavaScript creates inheritance. Below we can see this chain from the instance of a Dog down to the core
Object prototype:

> var v = new Dog("Vincent");
> console.log(v);
{
 name: "Vincent",
 __proto__: Dog {
 constructor: function Dog(name) { ... }
 name: "Bubbles"
 speak: function () { ... }
 __proto__: Animal {
 constructor: function Animal(age) { ... }
 age: 1
 __proto__: Object { ... }
 }
 }
}

This output shows how the __proto__ property is used to reference the prototype object that each level was
created from. That “chain” of __proto__ properties is our inheritance path. For those of us that are more visually
inclined, perhaps this diagram is better. Notice that our Dog instance (v) is at the bottom and the chain proceeds
up with the top level being the “root” JavaScript Object.

Object
(Constructor)

Object.prototype

Animal
(Constructor)

Animal.prototype

Dog
(Constructor)

Dog.prototype

vincent
(instance)

prototype

prototype

prototype

prototype

constructor

prototype

constructor

prototype

constructor

call parent

call to parent
not necessary

The JavaScript prototype chain FIGURE 1

phparch.com

 www.phparch.com April 2015 | 7

Database Versioning with Liquibase

We can show that JavaScript recognizes this prototype chain by using the instanceof operator on our newly
created objects. In each case, JavaScript is simply looking up the prototype chain to see if it finds a matching
object. The last line in the example below simply shows how you can reverse the logic to go from the prototype
down to the instance.

var v = new Dog();
console.log(v instanceof Dog); // true
console.log(v instanceof Animal); // true
console.log(v instanceof Object); // true

Animal.prototype.isPrototypeOf(v); // true

Calling Parent Methods
One thing we left out of our Animal-to-Dog relationship above is how we actually call the Animal constructor

when a new Dog is created. The parent method will not be automatically called for you! The difficulty is that we
can’t simply call Animal() directly, because the context inside that function will not be correct. Calling a function
like that would typically set this inside the function to point to the window object, our default context. That is not
helpful. Instead, we have to manually call the Animal constructor function while changing its context to point to
our new Dog instance.

function Animal(age) { /* ... */ }
// ...
function Dog(name, age) {
 Animal.apply(this, [age]);
 // ...
}

var v = new Dog("Vincent", 10);

By using the apply method on the Animal function
object, we can change the context within the execution
of the function. In other words, we change the value of
this inside of the Animal function body. That’s what
the first argument to the apply() method is: our new
context. From within the Dog function this points to the
newly created Dog instance, and we are simply passing
that reference as the context for the Animal function. The
second argument to apply() is an array of the arguments
that will be passed on to the called function (the age for the
new Dog/Animal).

The Animal constructor function is now operating on the
newly created Dog instance object instead of the window,
and anything it adds to this will actually be added to the
Dog instance.

Polymorphism
In the example above we see how we can call a parent

method (the Animal constructor) from a child method (the
Dog constructor). But this is not exactly polymorphism,
since the two functions do not share a name or form
(different method signatures). To show how JavaScript
supports this concept, we need another example.

A Side Note on apply()

The apply() method of
functions is used to change
context, and every single
function object will have this
method. However, you can
also use the call() method
to achieve the same goal; the
arguments are just slightly
different. Additionally, many
frameworks and utility libraries
have a way to “bind” a function
to a different context.

phparch.com

8 | April 2015 www.phparch.com

Database Versioning with Liquibase

Notice how the Animal object has an age property. This is great, but perhaps we want the age to always be
represented in “human years” (which we’ll assume is the default). To do this, we might create an accessor method
for the property. This does not need to be “privileged” because age is not private, but we could do that as well.
Here is our new Animal definition:

function Animal(age) {
 var alive = true;
 if (age) { this.age = age; }

 this.isAlive = function() { return alive; }
 this.die = function() { alive = false; }
}
Animal.prototype.age = 1;
Animal.prototype.getAge = function() { return this.age; }

We can see above that the getAge method is pretty simple currently: it returns the age property on this (the
current Animal or one of its descendants). But for our Dog we want to return the age in human years, but store it
in “dog years.” This means our accessor method must multiply the Dog’s age by about 7. To accomplish this we’ll
override the getAge method, call the parent Animal getAge method, and then return the proper value in “human
years.”

function Dog(name, age) { /* ... */ }

Dog.prototype.getAge = function() {
 var dogYears = Animal.prototype.getAge.apply(this);
 return (dogYears * 7);
}

There are a couple things to note in the example above. First, we must use the method as it is defined on the
Animal.prototype in order to call the parent method. If we try to simply call this.getAge() JavaScript will
think we want the Dog.prototype.getAge method and we’ll enter a recursive, infinite loop! Second, we have to
use the apply method of the getAge function object in order to switch the context again. Remember, if we were
to simply call the method as is (Animal.prototype.getAge()), then the context would be the object on the left
side of the dot: Animal.prototype. It would not be our Dog instance!

Once we have retrieved the stored age value, we can simply return that value multiplied by 7. In this manner we
are able to achieve polymorphism by having a method with the same name and same function signature, but with
different implementations depending on the type of object (Animal versus Dog versus Cat).

phparch.com

 www.phparch.com April 2015 | 9

Database Versioning with Liquibase

Wrapping Things Up
There are many facets to object-oriented

programming and we’ve really only hit on the
big concepts in these two articles. We hope
we’ve shown how the JavaScript object model
implements those core concepts and have given
you a deeper understanding of what is going on
under the covers. We can see how the prototype
allows for abstraction of the essence of modeled
objects and encapsulation through object
methods. We see inheritance in our prototype
chain, and we can implement polymorphism
through overridden methods within links of that
chain.

That all said, you should not be implementing
these practices directly in application code!
Instead, use one of the many very good
frameworks out there for dealing with object
types, instances, inheritance, polymorphism,
and other aspects of OOP. If you’re curious to
see how these are implemented (and seeing
different implementations of each) you can look
at prototypejs, Ember, dojo, MooTools, or ExtJS.
Understanding what is happening under the

hood should give you valuable insight when your
framework of choice isn’t doing what you think
it should. It can help debug those situations and
create workarounds, and could be very useful for
library or framework authors. But implementing
OOP on this level is cumbersome and fragile.
Work within a framework to develop good
practices within your application.

The Future, the Year 2000
There are some useful reference links at the

end of this article, but before we get there I’d
like to show you where ECMAScript (ES6, the
specification that informs JavaScript) is headed
with respect to OOP. In ES6 some new keywords
will be added to make the creation of prototypes
a bit easier for developers coming from class-
based languages. However, this all just syntactic
sugar. Nothing you have learned in this article is
changing! Instead, a layer is being added on top
of the prototype structure to simplify integration
into JavaScript from other languages.

phparch.com
http://www.graphstory.com

10 | April 2015 www.phparch.com

Database Versioning with Liquibase

In the future, you will be able to create a “class” and specify various pieces, including the prototype chain, with a
new extends keyword:

class Dog extends Animal {
 constructor(name, age) {
 super(age); // Call parent method of the same name
 if (name) { this._name = name; }
 }

 get name() {
 return this._name + " (the dog)";
 }

 set name(value) {
 this._name = value.toLowerCase();
 }

 speak() {
 return this.name + " says woof";
 }
}
// for data members, we still have to do this...
Dog.prototype.name = "Bubbles";

There are lots of new things in here. Obviously we have the class and extends keywords, but also the explicitly
named constructor function. Additionally, we can now use the super special method within a “class” to call
parent methods with the correct context. The get and set keywords specify getter and setter methods for
a given property such that when we use someDog.name = "Bob"; our setter method is called, rather than
direct property access. Technically, those last two keywords (get and set) are part of ES5 and are available in all
evergreen browsers!

This may look very appealing to you, especially coming from a class-based language such as PHP. However,
don’t forget that this is just syntactic sugar! If you run into problems you’ll still need to know how prototypical
inheritance works, because that’s what’s going to be happening under the hood!

10 | April 2015 www.phparch.com

Twitter: @jakerella

Shortly after it arrived at his home in 1993, JORDAN began disassembling his
first computer - his mother was not happy. She breathed more easily when
he moved from hardware into programming, starting with BASIC. Jordan’s
experience includes startups, companies large and small, and universities.
He contributes to open source projects and participates in local user
groups, barcamps, and hackathons. Jordan’s primary mission for over 10
years has been to use JavaScript, HTML, and CSS to elevate web
applications above their desktop rivals. He currently works as a Sr.
JavaScript Engineer and Team lead for appendTo, a leader in front-end
software solutions, specializing in Full Stack JavaScript, responsive web
design, and mobile development. In his down time he enjoys puzzles of all
sorts and board games.

phparch.com
phparch.com
http://twitter.com/jakerella

 www.phparch.com April 2015 | 11

Database Versioning with Liquibase

phparch.com
http://automattic.com/work-with-us

magazine

books

conferences

training

phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2015-4,april

