
FREE 

Article!



2 |  May 2015    www.phparch.com

Education Station

Easy Image Manipulation 
with Glide
Matthew Setter

Welcome back to another edition of Education Station. In 
this month’s edition, we’re going to have fun with images; 
specifically, we’re going to look at a library that makes it 
easy to manage just about everything to do with images 
in a web application. What’s more, it’s a library brought to 
you by The PHP League, otherwise known as The League of 
Extraordinary Packages—it’s called Glide.

DisplayInfo()

Requirements:
• PHP 5.4 or above
• Composer
• Git
• Glide - http://glide.thephpleague.com

Related URLs:
• Silex Documentation - 

http://silex.sensiolabs.org/documentation

2 |  May 2015    www.phparch.com

phparch.com
http://glide.thephpleague.com
http://silex.sensiolabs.org/documentation
phparch.com


3 |  May 2015    www.phparch.com

Education Station
Easy Image Manipulation with Glide

But before we get into it, let’s set the scene 
appropriately. You’re building a web application (or 
a website for a client), and you need to make images 
available, with no more effort than a standard HTML 
img link. But via that link, you need to be able to 
pass different parameters, allowing for the image 
to be rendered with a range of different effects and 
transformations, such as the following:

• Image manipulation (including cropping, 
stretching, and resizing)

• Image adjustment (including setting the 
brightness, contrast, and gamma level)

• Image effects (including blurring, pixelation, and 
filtering)

• Image quality
• Securing image URLs against user abuse

If you wanted all of this, it’s understandable that to 
code it in-house would take quite a bit of time and 
effort. Therefore, it is much better to find an external 
library—one developed, maintained, and tested to do 
all of this—which you can take and use.

Fortunately, that’s just what Glide is. Built atop 
two well-tested libraries, Intervention Image and 
Flysystem, which we looked at in February this year, 
Glide makes it virtually painless to set up an image 
server and integrate it with your site or application. 
Now you have one less consideration to manage as 
you build your application—one less component to 
build, manage, and test.

In this month’s column, we’re going to look at how 
to get it set up in coordination with Silex and how 
to perform a range of the effects, which I’ve already 
mentioned above. Just briefly, the reason for Silex is 
that Silex handles a range of functionality, which Glide 
doesn’t natively include, such as routing; in addition, it 
is tightly integrated with the secure URLs feature.

So first, let’s make both Glide and Silex available to 
our application.

Installing Glide & Silex
Assuming that you already have a new project 

directory set up for testing out Glide and that you have 
Composer in your system path, in the project directory, 
you can create a new composer.json file and add in 
the configuration below. You should also ensure the 
exif extension is enabled in your php installation.

{ 
    "require": { 
        "league/glide": "0.3.*" 
    } 
}

Alternatively, you can run the following commands, 
which will do it for you:

composer require league/glide:"0.3.*"; 
composer require silex/silex:"~1.2";

If you’ve created the file manually, then don’t forget 
to run composer install.

Directory Setup
Next, in your project directory, create a new directory 

called data; then, inside data, create two further 
directories, called source and cache. These two 
sub-directories will contain the images and the cached 
copies of them, respectively.

A Basic Glide Server
With the software available, the Glide source will be 

available in /vendor. So now, create a new file called 
index.php, and add in the code from Listing 1.

This will set up a basic Glide server, which looks 
for the original images in data/source and creates 
cached copies after the first request in data/cache. 
The third option, base_url, sets up the base URL for 
the img tag’s src attribute. For example, let’s say that I 
have an image with the name of 1.jpg.

It’s rather uncreative, but it works for the purposes 
of a demonstration. With the server set up and 
configured, we’ve then created a basic Silex 
application with debugging enabled (just in case 
something goes wrong) and initialized a request 
object. Of course, when you use this in production, 
you’d want to flip debug to false.

phparch.com


4 |  May 2015    www.phparch.com

Education Station
Easy Image Manipulation with Glide

A Basic Route
Now, believe it or not, that’s a lot 

of the work already done. However, 
we still need to configure a route 
so that we can access the images 
from an application. I’m going to 
keep it simple and use the following: 
/img/{id}. When dispatched, this 
will request from the Glide server the 
file /data/source/1.jpg. So now, 
to define this route in index.php, 
add the following code from Listing 
2 at the end (above $app->run()).

If you’re not familiar with Silex 
applications, this sets up a so-called 
named route, which can contain 
named parameters, such as {id}. 
So to complete the earlier example, 
we could request routes such as 
/img/1, img/200, and so on.

You’ll notice that the first parameter 
to the closure is $id, which matched 
the named argument. Silex takes 
care of automatically initializing $id 
for us by parsing the dispatched URL 
and extracting a value for $id from 
it. Finally, we pass to the closure both our Silex $app and the Glide $server variable.

For further information on Silex, check out the online documentation, which you can find at 
http://silex.sensiolabs.org/documentation. You will note that it is quite extensive and very well written.

A Basic Image 
Request

Inside the closure, the code makes 
use of the outputImage() function. 
This both generates and outputs 
a manipulated image, based on 
the image requested. The second 
parameter, a configuration array, 
is the most interesting part. Here, 
we’ve specified two parameters, 
w and h, which I’m sure you’ve 
guessed are width and height, 
respectively. Here’s the full list of 
available options:

LISTING 1
01. <?php
02. 
03. require_once('vendor/autoload.php');
04. 
05. use League\Flysystem\Adapter\Local;
06. use League\Flysystem\Filesystem;
07. use League\Glide\ServerFactory;
08. use Symfony\Component\HttpFoundation\Request;
09. 
10. // Setup Glide server
11. $server = ServerFactory::create([
12.    'source' => new Filesystem(new Local(__DIR__
13.                                         . '/data/source')),
14.    'cache' => new Filesystem(new Local(__DIR__
15.                                        . '/data/cache')),
16.    'base_url' => '/img',
17.    'max_image_size' => 1000 * 1000,
18. ]);
19. 
20. $app = new Silex\Application([
21.    'debug' => true
22. ]);
23. 
24. // Create request object
25. $request = Request::createFromGlobals();
26. 
27. $app->run();

index.php

LISTING 2
01. // define image route
02. $app->get(
03.    '/img/{id}',
04.    function($id, Request $request) use($app, $server) {
05.        $server->outputImage(
06.            $app->escape($id) . '.jpg',
07.            [
08.               'w' => 400,
09.               'h' => 400,
10.            ]
11.        );
12.    }
13. );
14. 
15. $app->run();

Adding our image route

phparch.com
http://silex.sensiolabs.org/documentation


5 |  May 2015    www.phparch.com

Education Station
Easy Image Manipulation with Glide

Parameter Description

w width of the image

h height of the image

fit Sets how the image is fitted to its target dimensions (May be one of the following: 
contain, max, stretch, crop)

crop Sets where the image is cropped when the fit parameter is set to crop

rect Crops the image to specific dimensions prior to any other resize operations

or Angle of orientation

bri Brightness

con Contrast

gam Image gamma

sharp Sharpness

blur Amount of blurring

pixel Amount of pixelation

filt Apply a greyscale or sepia filter

q Image quality

fm Image format (can be Jpeg, PNG, or Gif)

We’re not going to add all of the effects, but we’re going to play with the width, height, orientation, pixelation, 
image quality, and application of a filter. To do that, we need a good image. And as I’m a huge Marvel fan, and 
Avengers 2—Age of Ultron’s just about out, what better image to use than one of the Avengers, which I found on 
Flickr (Creative Commons, of course), at http://phpa.me/avengers-mural.

Original image at 2048x1536 FIGURE 1

phparch.com
http://phpa.me/avengers-mural


6 |  May 2015    www.phparch.com

Education Station
Easy Image Manipulation with Glide

You can see the original in Figure 1. Download it and save it in data/source as avengers.jpg. Next, update the 
Silex route to be /img/{name}, instead of /img/{id}/small, and in the closure, change $id to $name. With that 
done, use PHP’s built-in web server to launch the application. If you’re not familiar with using it, you can start it up 
with the following command:

php -S localhost:8080 -t .

Assuming all went well, open up http://localhost:8080/img/avengers2 in your browser, and you’ll see the 
image scaled to 400 pixels wide and 400 pixels high. If you now look in /data/cache, you’ll also see a cached 
copy of the file.

It’s worth mentioning here that the original image is only used, by default, if a cached copy has not been 
generated based on the configuration options supplied. What’s great about Glide is that you don’t have to do 
anything other than configure the cache directory and ensure that it has the correct permissions to set up caching.

It’s all done for us. Now let’s flip the image upside down and pixelate it. To do that, we’re going to set the 
orientation (or) to 180 degrees and pixelation (pixel) to 10. Orientation accepts the following: auto, 0, 90, 180, 
and 270, while Pixel accepts a number between 0 and 1000.

So update the configuration array to the following:

[ 
    'w' => 400, 
    'h' => 400, 
    'or' => 180, 
    'pixel' => 10 
]

If you reload the page in your browser, you’ll see the image is 
now upside down and barely recognizable, as in Figure 2.

Now that that’s done, let’s make it recognizable again by 
removing the pixelation, resetting it to its original orientation, 
removing ‘or,’ and having it automatically scale 
the height, proportional to a width of 1000 
pixels. In addition to that, we’ll apply the last 
effect, a Sepia filter. To do all of this, update 
the configuration array again to the following:

[ 
    'w' => 1000, 'filt' => 'sepia' 
]

Reloading the page again, you’ll see the final 
version of the image, as in Figure 3. I don’t 
know about you, but I think that a Sepia effect 
always looks amazing. There’s something 
about a lack of color that makes an image look 
glorious.

Upside down and pixelized FIGURE 2

Classic sepia tone FIGURE 3

phparch.com


7 |  May 2015    www.phparch.com

Education Station
Easy Image Manipulation with Glide

Protecting Images
Now that we’ve looked at the effects 

that you can create with Glide, it’s 
important to cover one final key aspect of 
the library, one essential in a production 
environment—securing images. If you’ve 
not thought of it before now, securing 
images is essential so that malicious users 
can’t abuse your server by attempting to 
generate any number of variations of one 
or more images to exhaust server memory 
and CPU.

In essence, it works by restricting image 
parameters when a unique token is 
signed with your secret key, which isn’t 
present in the request. If it’s missing or 
if it doesn’t match the expected hash 
of attributes+secret key, like a salt in a 
password, the new combination won’t be 
generated.

So what we’re going to do is adjust the 
original route to only render an image if 
a valid URL is used, which we’ll generate 
in a second route. In the second route, 
we’ll generate a URL, which contains the 
signing key, for the Avengers 2 image 
scaled to a width of 200 pixels. You can 
see this in Figure 4.

First, let’s look at the route that generates 
the URL, which you can see in Listing 3.

Now let’s look at Listing 4 with the 
revised, original route, which accounts for 
image protection. Notice that we had to 
add some use statments for some helper 
classes.

LISTING 3
01. $app->get(
02.    '/print-secure-url',
03.    function() use($app, $server, $signingKey) {
04.       $urlBuilder = UrlBuilderFactory::create(
05.                       'http://localhost:8080', $signingKey);
06.       return $urlBuilder->getUrl('/img/avengers2',
07.                                  ['w' => 200]);
08. });

Route for a secure image

LISTING 4
01. <?php
02. require_once('vendor/autoload.php');
03. 
04. use League\Flysystem\Adapter\Local;
05. use League\Flysystem\Filesystem;
06. use League\Glide\ServerFactory;
07. use League\Glide\Http\UrlBuilderFactory;
08. use League\Glide\Http\SignatureException;
09. use League\Glide\Http\SignatureFactory;
10. use Symfony\Component\HttpFoundation\Request;
11. 
12. // Setup Glide server
13. $server = ServerFactory::create([
14.    'source' => new Filesystem(new Local(__DIR__
15.                                         . '/data/source')),
16.    'cache' => new Filesystem(new Local(__DIR__
17.                                        . '/data/cache')),
18.    'base_url' => '/img',
19.    'max_image_size' => 1000 * 1000,
20. ]);
21. 
22. $app = new Silex\Application([
23.    'debug' => true
24. ]);
25. 
26. // Create request object
27. $request = Request::createFromGlobals();
28. 
29. // a secret key only we know
30. $signingKey = "Ultron Goes Down";
31. 

Secure image validation

Continued Next Page

Scaled to 200 pixels wide FIGURE 4

phparch.com


8 |  May 2015    www.phparch.com

Education Station
Easy Image Manipulation with Glide

If you now open up http://localhost:8080/print-secure-url, you’ll see that it generates a URL which includes the 
following:

/img/avengers?w=200&s=4c740579415917b96cb22ed3adcd5a8e

If you open that up, you’ll see the image render correctly. If you change the secret key(s) or any of the image 
options, you’ll be redirected to a 404 page, indicating that the image isn’t available.

Wrapping Up
And that’s how to rapidly set up a 

flexible yet secure image server for 
your web applications and websites. 
Sure, we’ve not looked at every 
function that the library has to offer, 
but I’m confident that if you’re keen, 
there’s more than enough for you 
to still look at. Explore and enjoy. I 
hope that this library helps you out—
and saves you lots of developmental 
effort and overhead.

’Til next time, happy coding.

LISTING 4 (CONT'D)
32. // route to display URL for our secure image
33. $app->get(
34.    '/print-secure-url',
35.    function() use($app, $server, $signingKey) {
36.       $urlBuilder = UrlBuilderFactory::create(
37.                       'http://localhost:8080', $signingKey);
38.       return $urlBuilder->getUrl('/img/avengers',
39.                                  ['w' => 200]);
40. });
41. 
42. // route to display secure image, if token is correct
43. $app->get(
44.    '/img/{name}',
45.    function($name, Request $request)
46.       use($app, $server, $signingKey) {
47.       // Validate HTTP signature
48.       try {
49.          SignatureFactory::create($signingKey)
50.             ->validateRequest($request);
51.       } catch (SignatureException $e) {
52.          // Handle error
53.          $app->abort(404, "Illegal Image Request");
54.       }
55. 
56.       $server->outputImage(
57.          $app->escape($name) . '.jpg',
58.          ['w' => 200]
59.       );
60.    }
61. );
62. 
63. $app->run();

Secure image validation

MATTHEW SETTER is a software developer, freelance technical writer 
http://www.matthewsetter.com/services/ and editor of Master Zend Framework, 
dedicated to helping you become a Zend Framework master? Want to be a master? 
Come find out more 
http://www.masterzendframework.com/welcome-from-phparch.

Twitter: @settermjd

phparch.com
http://localhost:8080/print-secure-url


magazine 

books

conferences

training

phparch.com

Keep your skills current and 
stay on top of the latest PHP 
news and best practices by 
reading each new issue of 
php[architect], jam-packed 
with articles. 

Learn more every month about 
frameworks, security, ecommerce, 
databases, scalability, migration, API 
integration, devops, cloud services, 
business development, content 
management systems, and the PHP 
community.

We also offer digital and print+digital 
subscriptions starting at $49/year.

Get the complete issue 
for only $6!

Want more articles 
like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2015-5,may

