
Functional Program
m

ing in PH
P

Sim
on H

olyw
ell

Simon Holywell is a Senior Software Engineer at Aurion
in Brisbane, Australia (http://aurion.com) and is
passionate about web application development and
motorcycles. His �irst public project was written with
PHP 3, and since then, he has worked with every version
of PHP and dabbled in Python, Scala, C, JavaScript, and
more. He is also the author of of SQLStyle.guide and the
ssdeep extensions for PHP’s PECL, Facebook’s HipHop
Virtual Machine (HHVM), and MySQL.

Functional Programming in PHP
Second Edition

by Simon Holywell

www.phparch.com

2 4

Many languages have embraced Functional Programming para-
digms to augment the tools available for programmers to solve
problems. It facilitates writing code that is easier to understand,
easier to test, and able to take advantage of parallelization making
it a good �it for building modern, scalable solutions.
PHP introduced anonymous function and closures in 5.3, providing a more succinct
way to tackle common problems. More recent releases have added generators and
variadics which can help write more concise, functional code. However, making
the mental leap from programming in the more common imperative style requires
understanding how and when to best use lambdas, closures, recursion, and more. It
also requires learning to think of data in terms of collections that can be mapped,
reduced, �lattened, and �iltered.

Functional Programming in PHP will show you how to leverage these new language
features by understanding functional programming principles. With over twice as
much content as its predecessor, this second edition expands upon its predecessor
with updated code examples and coverage of advances in PHP 7 and Hack. Plenty of
examples are provided in each chapter to illustrate each concept as it’s introduced
and to show how to implement it with PHP. You’ll learn how to use map/reduce,
currying, composition, and more. You’ll see what external libraries are available
and new language features are proposed to extend PHP’s functional programming
capabilities..

Sam
ple

Functional Program
m

ing in PH
P

Sim
on H

olyw
ell

Simon Holywell is a Senior Software Engineer at Aurion
in Brisbane, Australia (http://aurion.com) and is
passionate about web application development and
motorcycles. His �irst public project was written with
PHP 3, and since then, he has worked with every version
of PHP and dabbled in Python, Scala, C, JavaScript, and
more. He is also the author of of SQLStyle.guide and the
ssdeep extensions for PHP’s PECL, Facebook’s HipHop
Virtual Machine (HHVM), and MySQL.

Functional Programming in PHP
Second Edition

by Simon Holywell

www.phparch.com

2 4

Many languages have embraced Functional Programming para-
digms to augment the tools available for programmers to solve
problems. It facilitates writing code that is easier to understand,
easier to test, and able to take advantage of parallelization making
it a good �it for building modern, scalable solutions.
PHP introduced anonymous function and closures in 5.3, providing a more succinct
way to tackle common problems. More recent releases have added generators and
variadics which can help write more concise, functional code. However, making
the mental leap from programming in the more common imperative style requires
understanding how and when to best use lambdas, closures, recursion, and more. It
also requires learning to think of data in terms of collections that can be mapped,
reduced, �lattened, and �iltered.

Functional Programming in PHP will show you how to leverage these new language
features by understanding functional programming principles. With over twice as
much content as its predecessor, this second edition expands upon its predecessor
with updated code examples and coverage of advances in PHP 7 and Hack. Plenty of
examples are provided in each chapter to illustrate each concept as it’s introduced
and to show how to implement it with PHP. You’ll learn how to use map/reduce,
currying, composition, and more. You’ll see what external libraries are available
and new language features are proposed to extend PHP’s functional programming
capabilities..

Sam
ple

Functional Programming
in PHP

Second Edition

by
Simon Holywell

Sam
ple

Functional Programming in PHP—a php[architect] Guide
Contents Copyright ©2016 Simon Holywell—All Rights Reserved
Book and cover layout, design and text Copyright ©2016 musketeers.me, LLC. and its predecessors – All

Rights Reserved
Second Edition: October 2016

ISBN - print: 	978-1-940111-46-9
ISBN - PDF: 	 978-1-940111-47-6
ISBN - epub: 	978-1-940111-48-3
ISBN - mobi: 	978-1-940111-49-0
ISBN - safari: 	978-1-940111-50-6

Produced & Printed in the United States
No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by

means without the prior written permission of the publisher, except in the case of brief quotations embed-
ded in critical reviews or articles.

Disclaimer
Although every effort has been made in the preparation of this book to ensure the accuracy of the infor-

mation contained therein, this book is provided “as-is” and the publisher, the author(s), their distributors
and retailers, as well as all affiliated, related or subsidiary parties take no responsibility for any inaccuracy
and any and all damages caused, either directly or indirectly, by the use of such information. We have
endeavored to properly provide trademark information on all companies and products mentioned in the
book by the appropriate use of capitals. However, we cannot guarantee the accuracy of such information.

musketeers.me, the musketeers.me logo, php[architect], the php[architect] logo, php[architect] Guide are
trademarks or registered trademarks of musketeers.me, LLC, its assigns, partners, predecessors and succes-
sors. All other trademarks are the property of the respective owners.

Written by
Simon Holywell

Published by
musketeers.me, LLC.
201 Adams Ave.
Alexandria, VA 22301 USA

240-348-5PHP (240-348-5747)
info@phparch.com
www.phparch.com

Editor-in-Chief
Oscar Merida

Technical Reviewers
Koen van Urk and Oscar Merida

Copy Editor
Kara Ferguson

Layout and Design
Kevin Bruce

Sam
ple

Functional Programming in PHP III

			 About the Author	 � VII

			 Acknowledgements	 � XI

Chapter 1.	 Introduction	 � 1
Prerequisites	 � 1
Requirements	 � 2
For Users of Older PHP Versions	 � 2
Installing	 � 3

Chapter 2.	 What is Functional Programming?	 � 7
Let’s See Some Code	 � 9
History	 � 9
Other Functional Implementations	 � 15
Commercial Uses	 � 15
What is Functional Programming Best for?	 � 16
The Benefits of Functional Programming	 � 16
Functional Basics	 � 17

Table of
Contents

Sam
ple

Functional Programming in PHPIV

﻿﻿Table of Contents

Chapter 3.	 Language Features	 � 19
Types	 � 20
Functions	 � 23
Namespacing	 � 39
Recursion	 � 40
Map, Reduce, and Filter	 � 42
Memoization	 � 47
Generators	 � 47

Chapter 4.	 Helpful Libraries	 � 49
Library Installation	 � 50
The iter Library	 � 52

Chapter 5.	 HHVM’s Hack	 � 55
Types	 � 56
Lambda Expressions	 � 65
Special (Magical) Attributes	 � 66
Conclusion	 � 67

Chapter 6.	 Patterns	 � 69
Head and Tail	 � 70
Flattening lists	 � 70
Handling Your NULLS	 � 72
Composition	 � 75
Partial Functions	 � 76
Pipelines	 � 78
Pattern Matching	 � 80
Functors	 � 83
Applicatives	 � 88
Monads	 � 93

Sam
ple

Disclaimer

Functional Programming in PHP V

Chapter 7.	 Implementing the Theory	 � 103
IP Address Restriction	 � 103
Functional Primitives	 � 105
A Domain Specific Language in PHP	 � 108

Chapter 8.	 Event Driven Programming	 � 117
ReactPHP Installation	 � 118
Getting Started	 � 118
Add Some Logging	 � 119
Introduce a Monad	 � 119
Callback Wrangling	 � 122
Wrap Up the Show	 � 129

Chapter 9.	 Hazards of Functional Programming in PHP	 � 131

Chapter 10.	 Advances in PHP	 � 133
PHP 5.4	 � 133
PHP 5.5	 � 134
PHP 5.6	 � 135
PHP 7	 � 137
Further into the Future	 � 140

Chapter 11.	 Conclusion	 � 143

Appendix A.	 Additional Notes	 � 145
Understanding Type Signatures	 � 145
Using the UTF-8 Ellipsis	 � 149

Appendix B.	 Resources	 � 151
PHP REPLs	 � 151

Sam
ple

Functional Programming in PHPVI

﻿

Libraries	 � 152
Other Functional Implementations	 � 152
Online Courses (MOOC)	 � 152

			 Glossary	 � 153

			 Index 	 � 159

﻿Table of Contents

Sam
ple

Functional Programming in PHP VII

About the Author
Simon Holywell is a Senior Software Engineer at Aurion in Brisbane, Australia (http://aurion.com) and

is passionate about web application development and motorcycles. His first public project was written
with PHP 3, and since then, he has worked with every version of PHP and dabbled in Python, Scala, C,
JavaScript, and more. He is also the author of SQLStyle.guide, and the ssdeep extensions for PHP’s PECL,
Facebook’s HipHop Virtual Machine (HHVM), and MySQL.

Blog: https://www.simonholywell.com
Twitter: @Treffynnon—http://twitter.com/Treffynnon

Sam
ple

http://aurion.com
https://www.simonholywell.com
http://twitter.com/Treffynnon
http://twitter.com/Treffynnon

Functional Programming in PHPVIII

Sam
ple

Functional Programming in PHP 69

Patterns

In functional programming there are repeating patterns just as in any other programming style. This is
in fact a major source of interest in functional programming from unacquainted coders, as it brings with it
concise code.

Software patterns are generally agreed best practices for completing similar tasks in a universally identifi-
able and understood way. Much like object oriented programming, functional code also has a number of
patterns you will regularly see. These patterns assist in making more composable functions allowing for
greater reuse across various problem domains. Not only this, but they can help to make your API more
consistent for those implementing any functional library you might have written. If the pattern is followed
then implementers can accurately anticipate the result when they call the pattern from their code.

Patterns can be reproduced across a large number of types easily and quickly in most functional languag-
es, but in PHP we need to lay the ground work ourselves first. Looking to the world of mathematics there
are far more patterns than we will cover here. Some patterns are borrowed from the ideas implemented
in the Haskell programming language, which can be a little difficult to reproduce given PHPs weak type
system. It is, however, possible and they help to present excellent ways of producing reusable code.

Chapter

6
“Monads are return types that guide you through the happy path.”

–Erik Meijer (Computer Scientist, @headinthebox)

Sam
ple

http://twitter.com/headinthebox

Functional Programming in PHP70

Patterns

It does not mean we will avoid implementing difficult patterns though with applicatives and monads
both discussed. Some might suggest only a Haskell programmer should be interested in these formalisms,
but they would be short sighted. It is easier to learn a pattern in a language you already know well than a
completely foreign one. And, the patterns are actually useful in PHP code too, as we will explore further
into the book.

Reusable patterns are great and what we all strive for as programmers. Good, functional code takes this
up a notch and tries to abstract all operations into reusable and immutable code. To this end we will now
explore some common and some complex patterns in functional PHP code.

Should you be unwilling to push the boundaries of PHP, turn back now and wallow in your safe billa-
bong (oxbow lake, resaca, bayou). The next section has a raft and it is headed for the white water!

Head and Tail
We will start with a very simple pattern first though to ease our way into it. When working with lists and

recursion it can be very helpful to be able to easily obtain the first element of an array (the head) and what
is known as the tail of the array. Head, given an array, will return the first value from that array.

function head(array $arr) {
 return reset($arr);
}
head([1,2,3,4,5]); // 1

At the other end of the equation we have tail that will return a list with all but the first value in the array
contained in it.

function tail(array $arr) {
 return array_slice($arr, 1);
}
tail([1,2,3,4,5]); // [2,3,4,5]

These two functions can be used together to work through a list using recursion.

function print_items(array $arr) {
 echo head($arr) . '-';
 if(tail($arr)) print_items(tail($arr));
}
print_items([1,2,3,4,5]); // 1-2-3-4-5-

Flattening lists
Lists of lists can be very helpful when dealing with complex datasets or when transforming an array via

array_map() where it would return an array from the applied function. In some instances though, you
have a list of lists that really should just be one list with all values at the top level. The problem could look
something like:

$arr = [1, 2, 3, 4, 5];
$divisor = 10.5;
$arr2 = array_map(function($x) use ($divisor) {
 return [$x, $x / $divisor, $x % $divisor];
}, $arr);

Continued Next Page

Sam
ple

Flattening lists

Functional Programming in PHP 71

// [
// [1, 0.095238095238095233, 1],
// [2, 0.19047619047619047, 2],
// [3, 0.2857142857142857, 3],
// [4, 0.38095238095238093, 4],
// [5, 0.47619047619047616, 5]
//]

Now you need to array_sum() all the values, but you have a multi-dimensional array. You want to flat-
ten your list.

$arr3 = flatten($arr2);
// [
// 1, 0.095238095238095233, 1, 2, 0.19047619047619047, 2,
// 3, 0.2857142857142857, 3, 4, 0.38095238095238093, 4,
// 5, 0.47619047619047616, 5
//]

After flattening the array all values are at the top level of the array and it is no longer multi-dimensional
so we are now able to perform that all important array_sum() call.

array_sum($arr3); // 31.428571428571

PHP does not come with a flatten() function by default—as you might have suspected—and we are
going to have to write one ourselves as in Listing 6.1. To make it more flexible we will add a maximum
depth argument so an implementer can decide how many levels of their array they want to be flattened—
starting from the top most dimension. Additionally it is often very useful for associative array keys to be
maintained after the transformation so index access is not affected.

Listing 6.1
01. function flatten(array $array, $max_depth = null, $curr_depth = 1) {
02. $out = [];
03. foreach($array as $key => $val) {
04. if(is_array($val)) {
05. if(is_null($max_depth) || $curr_depth < $max_depth) {
06. $val = flatten($val, $max_depth, $curr_depth + 1);
07. }
08. $out = array_merge($out, $val);
09. } elseif(is_int($key)) {
10. $out[] = $val;
11. } else {
12. $out[$key] = $val;
13. }
14. }
15. return $out;
16. }

This definition of flatten() will maintain associative keys and reset integer keys. It will flatten all
dimensions of an array to one unless $max_depth specifies otherwise. It is common to only flatten an array
by one level so a helpful function to have on hand is flatten_one(), which can be written in terms of
flatten().

function flatten_one(array $array) {
 return flatten($array, 1);
}

Sam
ple

Functional Programming in PHP72

Patterns

This is more obvious and easier to read when reviewing code than simply using flatten($arr, 1) all
over the place in code (it is easier to search/grep for too).

Now that we have a working flatten_one() implementation, we can perform an array_map() with
keys in a much easier way than before by making use of a closure to handle the requirement for keys.

function map_with_keys(array $array, callable $func) {
 $ks = array_keys($array);
 $fx = function($key) use ($array, $func) {
 return [$key => $func($key, $array[$key])];
 };
 return flatten_one(array_map($fx, $ks));
}

Instead of trying to work through the values of the array we can iterate over the keys above and then
obtain the value later using the key inside $fx. To ensure that keys are maintained during the operation $fx
returns an associative array that is later flattened using flatten_one().

map_with_keys(
 ['a' => 1, 'b' => 2],
 function($k, $v) {
 return $v . $k;
 }
); // ['a' => '1a', 'b' => '2b']

With the keys being passed to our callback function it is now possible to incorporate the key into reduce
operations and make use of it.

reduce_with_keys(
 ['a' => 1, 'b' => 2],
 function($acc, $k, $v) {
 return $acc . $k . $v;
 },
 ''
); // a1b2

As you can see in the highly contrived example above, the array is reduced through string concatenation.
The resultant string contains both the keys and the values of each element within the array.

Handling Your NULLS
There are a number of functions in PHP—and I am sure many more in the legacy userland code you

work on—returning NULL when no record can be found, for example. When you then call the function, you
cannot be sure if it will return a record as you expect or a null value, which violates the principle a function
should always return the same type so it can be handled in the same way.

We have previously implemented PHP's array_reduce() function, and it serves again as a great exam-
ple. When it is fed an empty array, it will return NULL. Imagine the result of our reduce operation were to
be passed into a function expecting to receive an integer, then it would trigger an error from PHP’s parser.
There are a few ways to handle these null values and protect your code from unforeseen errors.

In the case of array_reduce(), you can simply set an initial value as the third parameter to the function.
This initial value will be returned if the input array is empty. Otherwise, it will be used as the base value to
add each reduce operation to.

If you do not have control over the code you are calling or you are implementing a function that doesn’t
allow for a default return value, then you can make use of the following two techniques.

Sam
ple

A

Functional Programming in PHP 159

Index
A
algorithms, 2, 17, 23, 33, 35
annotations, 60, 66
applicatives, 70, 88–94, 148
	 context, 91–92
	 interface, 89–90
	 type class, 89–90
arguments
	 list, 28
	 name, 147
	 supplied, 23, 75
array
	 associative, 72
	 class notation, 133
	 dereference, 135
	 filter, 104
	 notation, 81
	 sorted, 105
Async, 122–24
asynchronous operations, 124, 128
autoloading, 40, 132

B
Babbage, Charles, 1
Barclays Bank, 16
Bletchley Park, 12–13
Boole, George, 10
boolean algebra, 10

C
callbacks, 32, 35, 44, 46, 49, 122, 126, 133
Callback Wrangling, 122–23, 125, 127
cast operator, 21
class
	 instance, 36–38
	 name, 25–26, 38
closures, 20, 24, 26, 29–34, 36–38, 44–45, 65, 72, 117, 119,
133–34, 140, 144, 152–53, 157
	 arguments, 34
code

	 asynchronous, 117, 126
	 imperative, 15, 143
	 object oriented, 15, 39
composer, 2–4, 52, 75, 105, 118, 122, 124, 156
	 autoload, 4, 52, 105, 118
	 automation, 3
	 dump-autoload, 4
	 init, 3, 118
	 install, 4, 51, 118
	 update, 51
	 vendor, 3, 39
composition, 36, 75, 90, 100
constructor, 63, 95, 111
currying, 12, 36, 76–78
	 functionality, 77
	 process, 77

D
dependencies, 3–4, 50–53
domain specific languages (DSL), 15–16, 108, 115, 154
DSL. See domain specific languages

E
Elixir, 79
Enigma code, 12
Enum, 59
Erlang, 14, 16
event, 117–18, 120, 122, 124, 126, 128, 130
	 loop, 118–19, 127–28
Everest, George, 10
extensions, 2–5, 26, 28, 35, 41, 49–50, 56, 117, 154, 158
	 functional-php, 50
	 php-immutable, 132

F
Facebook, 3, 5, 55–56
factory, 111, 118
Flat Map, 45–46
flatten, 46, 71–72
Flowers, Tommy, 12
fmap, 84–90

Sam
ple

Functional Programming in PHP160

Index

Frege’s Basic Law, 10
function
	 anonymous, 28–29, 33, 41, 65, 82, 93, 97, 153, 155
	 arguments, 26, 28, 56, 60, 81, 136, 138, 147, 154
	 basic monad, 120
	 body, 24–25
	 callback closure, 107
	 composable, 69, 100
	 compose, 50, 100–101
	 higher order, 14
	 list/iterable access, 52
	 named, 23, 25, 28, 121
	 namespacing, 136
	 objects, 36, 38, 42, 126, 154
	 parameters, 27, 59–60
	 pipeline, 78–80
	 recursive, 11–12, 40
	 return values, 135, 138
	 variadic, 135, 149
	 wrapped, 88–89, 93
functional languages, 7, 14–16, 29, 69, 93, 131, 147
FunctionalPhp, 140
Functionals, 47, 78, 105, 144
functors, 36, 38, 83, 85–89, 91, 93–94, 96, 134, 148
	 law, 87

G
Geheimschreiber, 12
generator, 47–48, 52–53, 134, 154–55
	 expressions, 140
	 syntax, 47
generics, 59, 62–64
Gödel, Kurt, 11–12

H
Hack, 6, 55–62, 64–67, 154
	 language, 3, 55–56
hash, 33, 47
Haskell, 8, 14–16, 80–81, 84, 94, 98, 143, 148, 152, 154
	 programming language, 69, 78
	 types, 147

HHVM’s Hack, 55–56, 58, 60, 62, 64, 66, 68

I
iterators, 48, 52

J
JavaScript, 29, 49, 117
Java Virtual Machine (JVM), 15, 56, 155, 157
Jones, Simon Peyton, 8, 103
JVM. See Java Virtual Machine
Jython, 56

K
key/value list, 20, 58

L
lambda, 28–29, 41, 117, 121, 144, 153, 155
	 calculus, 11, 29
	 expressions, 11–12, 65–66
	 functions, 18, 20, 28–34, 41, 65, 133
lazy loading, 29, 32, 75
libraries
	 functional, 50, 69
	 php-option, 74, 98
LISP, 13–14, 16
	 programming language, 133
logging, 100, 119
Lovelace, Ada, 1

M
map, 14, 32, 35, 42–46, 52–53, 58, 62–63, 70, 72, 76,
79–80, 94–97, 99, 102, 119–20
	 ordered, 20, 58
memoize, 47, 66
Monadic Laws, 96
monads, 69–70, 93–99, 101–2, 119–22, 148, 155
	 container, 120
	 interface, 94
	 list, 120
	 state, 102
	 structure, 94
	 writer, 99, 102

Sam
ple

N

Functional Programming in PHP 161

N
namespaces, 25
NET framework, 154
Newman, Max, 12

O
object-oriented programming, 16, 29
OCaml, 56, 152, 155
operator, splat, 27–28, 136

P
partial function application, 36, 50, 76–77, 82, 156–57
pattern matching, 15, 80–82
PDO, 98–99
PECL, 2, 5, 50, 156
	 extension, 4–5, 49, 117
PHPDaemon, 129
PHPDoc, 145–46, 156
PHP SuperClosure, 29, 152
pipelines, 78–80, 156
primitives, functional, 49–50, 105, 107–8, 154
promises, 124, 126–28
	 deferred, 127–28
PsySH, 2, 151
Python, 14, 41, 56

R
React/Async project, 124
React/Partial, 2, 50–51, 76, 149, 152, 157
ReactPHP, 117, 119, 129, 143
recursion, 11, 14, 19–20, 40–41, 44, 70, 157
	 direct, 41
	 indirect, 41
	 infinite, 155
	 mutual, 41
recursive form, common, 40
REPL, 2, 156–57
resolver, 125, 127–28
RFC, 66, 106, 135, 138, 140, 144, 157
Russell, Bertrand, 10

S
Scala, 15–16, 49, 80–81, 143, 147–48, 152, 157
	 Option values, 74
	 programming language, 15, 152
scope, 24, 30, 36–38, 65, 128
	 parent, 24–25, 157
state
	 avoiding, 117
	 global mutable, 7, 41
	 maintaining, 9
subroutines, 153–55
superglobals, 24

T
transparency, referential, 8, 17, 157
Turing, 12–13, 16
	 Machines, 11–12
	 Test, 13
type hints, 23, 25–26, 59, 86, 136–38
	 callable, 133
	 scalar, 137
	 strict, 23
types
	 complex, 88
	 enumeration, 59
	 expected, 147
	 Hack, 56
	 immutable, 59
	 internal, 60
	 new, 56, 61
	 scalar, 20, 26, 56, 147
	 strict, 137
	 weak, 69

U
Ubuntu, 3, 5–6, 158
Underscore.php, 50–51, 132, 144
US Secure Hash Algorithm, 33
UTF-8, 113, 121, 158
	 Ellipsis, 76, 149, 158

Sam
ple

Functional Programming in PHP162

Index

V
values
	 carried, 79
	 coerce, 147
	 primitive, 43
	 scalar, 111
variables, global, 25, 30
variadics, 26–28, 135–36
Vector, 58, 62

W
Windows, 6, 149, 158

Z
Zend, 157
	 Engine, 56
	 runtime, 139
Zephir, 56

Sam
ple

php[architect] Books
The php[architect] series of books cover topics relevant to modern PHP
programming. We offer our books in both print and digital formats. Print copy
price includes free shipping to the US. Books sold digitally are available to
you DRM-free in PDF, ePub, or Mobi formats for viewing on any device that
supports these.
To view the complete selection of books and order a copy of your own, please
visit: http://phparch.com/books/.

•	 Web Security 2016
Edited by Oscar Merida
ISBN: 978-1940111414

•	 Docker for Developers
By Chris Tankersley
ISBN: 978-1940111360 (Print
edition)

•	 Building Exceptional Sites
with WordPress & Thesis
By Peter MacIntyre
ISBN: 978-1940111315

•	 Integrating Web Services
with OAuth and PHP
By Matthew Frost
ISBN: 978-1940111261

•	 Zend Framework 1 to 2
Migration Guide
By Bart McLeod
ISBN: 978-1940111216

•	 XML Parsing with PHP
By John M. Stokes
ISBN: 978-1940111162

•	 Zend PHP 5 Certification
Study Guide, Third Edition
By Davey Shafik with Ben Ramsey
ISBN: 978-1940111100

•	 Mastering the SPL Library
By Joshua Thijssen
ISBN: 978-1940111001

Sam
ple

http://phparch.com/books/

	About the Author
	Acknowledgements
	Introduction
	Prerequisites
	Requirements
	For Users of Older PHP Versions
	Installing

	What is Functional Programming?
	Let’s See Some Code
	History
	Other Functional Implementations
	Commercial Uses
	What is Functional Programming Best for?
	The Benefits of Functional Programming
	Functional Basics

	Language Features
	Types
	Functions
	Namespacing
	Recursion
	Map, Reduce, and Filter
	Memoization
	Generators

	Helpful Libraries
	Library Installation
	The iter Library

	HHVM’s Hack
	Types
	Lambda Expressions
	Special (Magical) Attributes
	Conclusion

	Patterns
	Head and Tail
	Flattening lists
	Handling Your NULLS
	Composition
	Partial Functions
	Pipelines
	Pattern Matching
	Functors
	Applicatives
	Monads

	Implementing the Theory
	IP Address Restriction
	Functional Primitives
	A Domain Specific Language in PHP

	Event Driven Programming
	ReactPHP Installation
	Getting Started
	Add Some Logging
	Introduce a Monad
	Callback Wrangling
	Wrap Up the Show

	Hazards of Functional Programming in PHP
	Advances in PHP
	PHP 5.4
	PHP 5.5
	PHP 5.6
	PHP 7
	Further into the Future

	Conclusion
	Additional Notes
	Understanding Type Signatures
	Using the UTF-8 Ellipsis

	Resources
	PHP REPLs
	Libraries
	Other Functional Implementations
	Online Courses (MOOC)

	Glossary
	Index

