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Many languages have embraced Functional Programming para-
digms to augment the tools available for programmers to solve 
problems. It facilitates writing code that is easier to understand, 
easier to test, and able to take advantage of parallelization making 
it a good �it for building modern, scalable solutions.
PHP introduced anonymous function and closures in 5.3, providing a more succinct 
way to tackle common problems. More recent releases have added generators and 
variadics which can help write more concise, functional code. However, making 
the mental leap from programming in the more common imperative style requires 
understanding how and when to best use lambdas, closures, recursion, and more. It 
also requires learning to think of data in terms of collections that can be mapped, 
reduced, �lattened, and �iltered.

Functional Programming in PHP will show you how to leverage these new language 
features by understanding functional programming principles. With over twice as 
much content as its predecessor, this second edition expands upon its predecessor 
with updated code examples and coverage of advances in PHP 7 and Hack. Plenty of 
examples are provided in each chapter to illustrate each concept as it’s introduced 
and to show how to implement it with PHP. You’ll learn how to use map/reduce, 
currying, composition, and more. You’ll see what external libraries are available 
and new language features are proposed to extend PHP’s functional programming 
capabilities..
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Patterns

In functional programming there are repeating patterns just as in any other programming style. This is 
in fact a major source of interest in functional programming from unacquainted coders, as it brings with it 
concise code.

Software patterns are generally agreed best practices for completing similar tasks in a universally identifi-
able and understood way. Much like object oriented programming, functional code also has a number of 
patterns you will regularly see. These patterns assist in making more composable functions allowing for 
greater reuse across various problem domains. Not only this, but they can help to make your API more 
consistent for those implementing any functional library you might have written. If the pattern is followed 
then implementers can accurately anticipate the result when they call the pattern from their code.

Patterns can be reproduced across a large number of types easily and quickly in most functional languag-
es, but in PHP we need to lay the ground work ourselves first. Looking to the world of mathematics there 
are far more patterns than we will cover here. Some patterns are borrowed from the ideas implemented 
in the Haskell programming language, which can be a little difficult to reproduce given PHPs weak type 
system. It is, however, possible and they help to present excellent ways of producing reusable code.

Chapter

6
“Monads are return types that guide you through the happy path.”

–Erik Meijer (Computer Scientist, @headinthebox)
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It does not mean we will avoid implementing difficult patterns though with applicatives and monads 
both discussed. Some might suggest only a Haskell programmer should be interested in these formalisms, 
but they would be short sighted. It is easier to learn a pattern in a language you already know well than a 
completely foreign one. And, the patterns are actually useful in PHP code too, as we will explore further 
into the book.

Reusable patterns are great and what we all strive for as programmers. Good, functional code takes this 
up a notch and tries to abstract all operations into reusable and immutable code. To this end we will now 
explore some common and some complex patterns in functional PHP code.

Should you be unwilling to push the boundaries of PHP, turn back now and wallow in your safe billa-
bong (oxbow lake, resaca, bayou). The next section has a raft and it is headed for the white water!

Head and Tail
We will start with a very simple pattern first though to ease our way into it. When working with lists and 

recursion it can be very helpful to be able to easily obtain the first element of an array (the head) and what 
is known as the tail of the array. Head, given an array, will return the first value from that array.

function head(array $arr) { 
   return reset($arr); 
} 
head([1,2,3,4,5]); // 1

At the other end of the equation we have tail that will return a list with all but the first value in the array 
contained in it.

function tail(array $arr) { 
   return array_slice($arr, 1); 
} 
tail([1,2,3,4,5]); // [2,3,4,5]

These two functions can be used together to work through a list using recursion.

function print_items(array $arr) { 
   echo head($arr) . '-'; 
   if(tail($arr)) print_items(tail($arr)); 
} 
print_items([1,2,3,4,5]); // 1-2-3-4-5-

Flattening lists
Lists of lists can be very helpful when dealing with complex datasets or when transforming an array via 

array_map() where it would return an array from the applied function. In some instances though, you 
have a list of lists that really should just be one list with all values at the top level. The problem could look 
something like:

$arr = [1, 2, 3, 4, 5]; 
$divisor = 10.5; 
$arr2 = array_map(function($x) use ($divisor) { 
   return [$x, $x / $divisor, $x % $divisor]; 
}, $arr);

Continued Next Page
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// [ 
//    [1, 0.095238095238095233, 1], 
//    [2, 0.19047619047619047, 2], 
//    [3, 0.2857142857142857, 3], 
//    [4, 0.38095238095238093, 4], 
//    [5, 0.47619047619047616, 5] 
// ]

Now you need to array_sum() all the values, but you have a multi-dimensional array. You want to flat-
ten your list.

$arr3 = flatten($arr2); 
// [ 
//    1, 0.095238095238095233, 1, 2, 0.19047619047619047, 2, 
//    3, 0.2857142857142857, 3, 4, 0.38095238095238093, 4, 
//    5, 0.47619047619047616, 5 
// ]

After flattening the array all values are at the top level of the array and it is no longer multi-dimensional 
so we are now able to perform that all important array_sum() call.

array_sum($arr3); // 31.428571428571

PHP does not come with a flatten() function by default—as you might have suspected—and we are 
going to have to write one ourselves as in Listing 6.1. To make it more flexible we will add a maximum 
depth argument so an implementer can decide how many levels of their array they want to be flattened—
starting from the top most dimension. Additionally it is often very useful for associative array keys to be 
maintained after the transformation so index access is not affected.

Listing 6.1
01. function flatten(array $array, $max_depth = null, $curr_depth = 1) {
02.    $out = [];
03.    foreach($array as $key => $val) {
04.       if(is_array($val)) {
05.          if(is_null($max_depth) || $curr_depth < $max_depth) {
06.             $val = flatten($val, $max_depth, $curr_depth + 1);
07.          }
08.          $out = array_merge($out, $val);
09.       } elseif(is_int($key)) {
10.          $out[] = $val;
11.       } else {
12.          $out[$key] = $val;
13.       }
14.    }
15.    return $out;
16. }

This definition of flatten() will maintain associative keys and reset integer keys. It will flatten all 
dimensions of an array to one unless $max_depth specifies otherwise. It is common to only flatten an array 
by one level so a helpful function to have on hand is flatten_one(), which can be written in terms of 
flatten().

function flatten_one(array $array) { 
   return flatten($array, 1); 
}
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This is more obvious and easier to read when reviewing code than simply using flatten($arr, 1) all 
over the place in code (it is easier to search/grep for too).

Now that we have a working flatten_one() implementation, we can perform an array_map() with 
keys in a much easier way than before by making use of a closure to handle the requirement for keys.

function map_with_keys(array $array, callable $func) { 
    $ks = array_keys($array); 
    $fx = function($key) use ($array, $func) { 
        return [$key => $func($key, $array[$key])]; 
    }; 
    return flatten_one(array_map($fx, $ks)); 
}

Instead of trying to work through the values of the array we can iterate over the keys above and then 
obtain the value later using the key inside $fx. To ensure that keys are maintained during the operation $fx 
returns an associative array that is later flattened using flatten_one().

map_with_keys( 
   ['a' => 1, 'b' => 2], 
   function($k, $v) { 
      return $v . $k; 
   } 
); // ['a' => '1a', 'b' => '2b']

With the keys being passed to our callback function it is now possible to incorporate the key into reduce 
operations and make use of it.

reduce_with_keys( 
   ['a' => 1, 'b' => 2], 
   function($acc, $k, $v) { 
      return $acc . $k . $v; 
   }, 
   '' 
); // a1b2

As you can see in the highly contrived example above, the array is reduced through string concatenation. 
The resultant string contains both the keys and the values of each element within the array.

Handling Your NULLS
There are a number of functions in PHP—and I am sure many more in the legacy userland code you 

work on—returning NULL when no record can be found, for example. When you then call the function, you 
cannot be sure if it will return a record as you expect or a null value, which violates the principle a function 
should always return the same type so it can be handled in the same way.

We have previously implemented PHP's array_reduce() function, and it serves again as a great exam-
ple. When it is fed an empty array, it will return NULL. Imagine the result of our reduce operation were to 
be passed into a function expecting to receive an integer, then it would trigger an error from PHP’s parser. 
There are a few ways to handle these null values and protect your code from unforeseen errors.

In the case of array_reduce(), you can simply set an initial value as the third parameter to the function. 
This initial value will be returned if the input array is empty. Otherwise, it will be used as the base value to 
add each reduce operation to.

If you do not have control over the code you are calling or you are implementing a function that doesn’t 
allow for a default return value, then you can make use of the following two techniques.
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