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REST and HTTP

• REST dictates that the HTTP actions be the verbs

• GET

• POST

• PUT

• DELETE

• In REST you would never use:

• GET /profile/get/userid/42



Payloads

• XML

• JSON

• HTML

• Other
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Result Codes

• 200 OK 

Whatever you asked was returned. Usually used for 

GET

• 201 Created

Good for a successful POST

• 202 Accepted

A successful PUT would return a 202



Result Codes

• 400 Bad Request.
Literally, the request cannot be fulfilled due to bad syntax.

• 401 Unauthorized
Not a 403. This one indicates that authorization is possible but failed or has not 
been provided.

• 403 Forbidden
We know who you are and you still can’t get here. Or we don’t know who you are 
but we don’t care because you aren’t allowed here.

• 404 Not Found
The resource you are looking for is not here but could be here in the future.

• 409 Conflict
For some reason, the server cannot return a valid response. In our sample code a 
POST to a resource that already exists returns a 409 or when multiple people are 
editing the same resource.



Serving APIs

• Hand Code

• Frapi (http://getfrapi.com)

• Zend Framework

http://getfrapi.com/


Serving APIs – Sample Code

• Build an API for your profile 

/profile

• GET /profile/:userid

• PUT /profile/:userid

• POST /profile/:userid

• DELETE /profile/:userid



Serving APIs – Hand Code

Show stunning example 

of hand-crafted code here



Serving APIs – frapi

Show shining example 

of frapi’s ease of use 

here



Serving APIs – Zend Framework

Show the power and 

might of Zend 

Framework in a code 

example here.



A little about security

• Nonce 

(Stolen from Forms, not API specific)

• Track IP addresses invalidate session if it changes

• If API is closed, require API Key to be registered 

and still do the two above.



Conclusion

• APIs are not difficult

• APIs are the magic sauce of the coming web
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