
SEATTLE • PORTLAND • AUSTIN • BALTIMORE • ORLANDO

APIs from the 

ground up

Cal Evans

cal@blueparabola.com



Types of APIs

• Payload over HTTP

• SOAP

• REST



Types of APIs

• Payload over HTTP

• SOAP

• REST



Types of APIs

• Payload over HTTP

• SOAP

• REST



REST and HTTP

• REST dictates that the HTTP actions be the verbs

• GET

• POST

• PUT

• DELETE

• In REST you would never use:

• GET /profile/get/userid/42



Payloads

• XML

• JSON

• HTML

• Other



HTTP Actions

• GET
• Exactly what you think. It asks for a resource.

• Should error if the resource does not exist.

• GET /profile/1
• POST

• Submits a new resource for storage. Akin to SQL’s INSERT. 

• Should error if the resource already exists.

• POST /profile/1

• PUT
• Submits a resource for update. Akin to SQL’s UPDATE

• Should error if the resource does not exist.

• PUT /profile/1

• DELETE
• Just what you think, it deletes a resource.

• Should error if the resource does not exist.

• DELETE /profile/1



HTTP Actions

• GET
• Exactly what you thing. It asks for a resource.

• Should error if the resource does not exist.

• GET /profile/1

• POST
• Submits a new resource for storage. Akin to SQL’s INSERT. 

• Should error if the resource already exists.

• POST /profile/1
• PUT

• Submits a resource for update. Akin to SQL’s UPDATE

• Should error if the resource does not exist.

• PUT /profile/1

• DELETE
• Just what you think, it deletes a resource.

• Should error if the resource does not exist.

• DELETE /profile/1



HTTP Actions

• GET
• Exactly what you thing. It asks for a resource.

• Should error if the resource does not exist.

• GET /profile/1

• POST
• Submits a new resource for storage. Akin to SQL’s INSERT. 

• Should error if the resource already exists.

• POST /profile/1

• PUT
• Submits a resource for update. Akin to SQL’s UPDATE

• Should error if the resource does not exist.

• PUT /profile/1
• DELETE

• Just what you think, it deletes a resource.

• Should error if the resource does not exist.

• DELETE /profile/1



HTTP Actions

• GET
• Exactly what you thing. It asks for a resource.

• Should error if the resource does not exist.

• GET /profile/1

• POST
• Submits a new resource for storage. Akin to SQL’s INSERT. 

• Should error if the resource already exists.

• POST /profile/1

• PUT
• Submits a resource for update. Akin to SQL’s UPDATE

• Should error if the resource does not exist.

• PUT /profile/1

• DELETE
• Just what you think, it deletes a resource.

• Should error if the resource does not exist.

• DELETE /profile/1



Result Codes

• 200 OK 

Whatever you asked was returned. Usually used for 

GET

• 201 Created

Good for a successful POST

• 202 Accepted

A successful PUT would return a 202



Result Codes

• 400 Bad Request.
Literally, the request cannot be fulfilled due to bad syntax.

• 401 Unauthorized
Not a 403. This one indicates that authorization is possible but failed or has not 
been provided.

• 403 Forbidden
We know who you are and you still can’t get here. Or we don’t know who you are 
but we don’t care because you aren’t allowed here.

• 404 Not Found
The resource you are looking for is not here but could be here in the future.

• 409 Conflict
For some reason, the server cannot return a valid response. In our sample code a 
POST to a resource that already exists returns a 409 or when multiple people are 
editing the same resource.



Serving APIs

• Hand Code

• Frapi (http://getfrapi.com)

• Zend Framework

http://getfrapi.com/


Serving APIs – Sample Code

• Build an API for your profile 

/profile

• GET /profile/:userid

• PUT /profile/:userid

• POST /profile/:userid

• DELETE /profile/:userid



Serving APIs – Hand Code

Show stunning example 

of hand-crafted code here



Serving APIs – frapi

Show shining example 

of frapi’s ease of use 

here



Serving APIs – Zend Framework

Show the power and 

might of Zend 

Framework in a code 

example here.



A little about security

• Nonce 

(Stolen from Forms, not API specific)

• Track IP addresses invalidate session if it changes

• If API is closed, require API Key to be registered 

and still do the two above.



Conclusion

• APIs are not difficult

• APIs are the magic sauce of the coming web



Who Am I?

Cal Evans
Chief Marketing Officer, Blue Parabola

http://phparch.com

http://blog.calevans.com

http://twitter.com/calevans

cal@blueparabola.com

cal@calevans.com

AIM:cal@calevans.com

Skype: cal-evans


