
SEATTLE • PORTLAND • AUSTIN • BALTIMORE • ORLANDO

Five tools every PHP

programmer should know

(and love)

Cal Evans

cal@blueparabola.com

0:php lint

• Author/Project Lead:

PHP Core Team

• Website:

http://www.php.net/manual/en/features.commandline.options.php

• Installation:

Included in PHP

• MYLALH Scale:

0 (Actually Helpful)

http://www.php.net/manual/en/features.commandline.options.php

0:php lint

0:php lint

Overview

• Built into PHP

• Not true lint, just a syntax checker

• Life saver if you are in a hurry

1:phploc

• Author/Project Lead:

Sebastian Bergman

• Website:

http://github.com/sebastianbergmann/phploc

• Installation:

PEAR

• MYLALH Scale:

1 (Not painful)

http://github.com/sebastianbergmann/phploc

1:phploc

phploc is a tool for quickly measuring the size of a

PHP project.

The goal of phploc is not to replace more

sophisticated tools such as phpcs, pdepend, or

phpmd, but rather to provide an alternative to them

when you just need to get a quick understanding of

a project's size

1:phploc

1:phploc

• Measures

• Raw Lines of Code (LOC)

• Lines of comments (CLOC)

• Non-Comment Lines of Code (NCLOC)

• Namespaces

• Classes

• Methods

Cyclomatic Complexity

1:phploc

Cyclomatic Complexity

“Cyclomatic complexity (or conditional complexity) is
a software metric (measurement). It was developed
by Thomas J. McCabe, Sr. in 1976 and is used to
indicate the complexity of a program. It directly
measures the number of linearly independent paths
through a program's source code.”

http://en.wikipedia.org/wiki/Cyclomatic_complexity

1:phploc

Overview

• Easy to use tool

• Provides quick overview of your poject’s size and
complexity

• Great stats

2:phpdepend

• Author/Project Lead:
Manuel Pichler

• Website:
http://pdepend.org

• Installation:
PEAR *

• MYLALH Scale:
1 (Benign)

2:phpdepend

• PHP_Depend is a small program that performs static code analysis on a given
source base.

• PHP_Depend first takes the source code and parses it into an easily
processable internal data structure called an AST (Abstract Syntax Tree)

• Then it takes the generated AST and measures several values, the so called
software metrics.

• Cyclomatic Complexity

• Npath Complexity

• CodeRank

• Lines of Code

http://en.wikipedia.org/wiki/Abstract_syntax_tree

2:phpdepend

Overview

• Duplicates some of phploc

• Gives a slightly different view of the code view

• Generates pretty graphics if you can get *&^% imageick installed.

• Because it is more complete, it is more complex and takes much longer to run.

• Great cron job tool to add some nice graphics and info to your project’s web page.

• Documentation is very incomplete. If you understand what it does and like it, then use it.
Otherwise, it may not be the best tool for your project.

2:phpdepend

2:phpdepend

3:phpcpd

• Author/Project Lead:

Sebastian Bergman

• Website:

http://github.com/sebastianbergmann/phpcpd

• Installation:

PEAR

• MYLALH Scale:

2 (PEAR Hell)

3:phpcpd

The goal of phpcpd is not to replace more

sophisticated tools such as phpcs, pdepend, or

phpmd, but rather to provide an alternative to them

when you just need to get a quick overview of

duplicated code in a project. (Copy and Paste

Detector)

3:phpcpd

3:phpcpd

Overview

• Quick tool but one you won’t run often

• Memory hog

• Useful for team leads and project managers to keep

an eye on things.

4:CodeSniffer

• Author/Project Lead:

Greg Sherwood

• Website:

http://pear.php.net/package/PHP_CodeSniffer

• Installation:

PEAR

• MYLALH Scale:

7 (Curly Brace Hell)

4:CodeSniffer

PHP_CodeSniffer is a PHP5 script that tokenises

and “sniffs” PHP, JavaScript and CSS files to detect

violations of a defined coding standard.

4:CodeSniffer

• 5 coding standards

• PEAR

• PHPCS

• Squiz

• WordPress

• Zend

• You can create your own

4:CodeSniffer

4:CodeSniffer

FILE: D:\zf-full\library\Zend\Amf\Parse\Resource\MysqlResult.php

--

FOUND 8 ERROR(S) AFFECTING 7 LINE(S)

--

51 | ERROR | Opening brace should be on a new line

54 | ERROR | Variable "fields_transform" is not in valid camel caps format

55 | ERROR | Expected "for (...) {\n"; found "for(...) {\n"

57 | ERROR | Expected "if (...) {\n"; found "if(...) {\n"

58 | ERROR | Variable "fields_transform" is not in valid camel caps format

62 | ERROR | Expected "while (...) {\n"; found "while(...) {\n"

63 | ERROR | Expected "foreach (...) {\n"; found "foreach(...) {\n"

63 | ERROR | Variable "fields_transform" is not in valid camel caps format

--

4:CodeSniffer

public function getIncludedSniffs()

{

return array(

'Generic/Sniffs/Functions/OpeningFunctionBraceBsdAllmanSniff.php

',

'Generic/Sniffs/PHP/DisallowShortOpenTagSniff.php',

'Generic/Sniffs/WhiteSpace/DisallowTabIndentSniff.php',

'PEAR/Sniffs/Classes/ClassDeclarationSniff.php',

'PEAR/Sniffs/ControlStructures/ControlSignatureSniff.php',

'PEAR/Sniffs/Files/LineEndingsSniff.php',

'PEAR/Sniffs/Functions/FunctionCallArgumentSpacingSniff.php',

'PEAR/Sniffs/Functions/FunctionCallSignatureSniff.php',

'PEAR/Sniffs/Functions/ValidDefaultValueSniff.php',

'PEAR/Sniffs/WhiteSpace/ScopeClosingBraceSniff.php',

'Squiz/Sniffs/Functions/GlobalFunctionSniff.php',

);

}//end getIncludedSniffs()

4:CodeSniffer

Overview

• Powerful tool in the right hands. (Instrument of

torture in the wrong hands)

• Run early and run often

• The output is not just so your code is pretty.

Adhering to a standard is vital for any project

• You can create your own standards file.

5:phing

• Author/Project Lead:

Hans Lellelid, Michiel Rook/Community

• Website:

http://phing.info/trac/wiki/Development/Contributors

• Installation:

PEAR

• MYLALH Scale:

1 (XML Quagmire)

http://phing.info/trac/wiki/Development/Contributors

5:phing

Phing is a project build system based on Apache

ant [ant]. You can do anything with Phing that you

could do with a traditional build system like Gnu

make [gnumake], and Phing's use of simple XML

build files and extensible PHP "task" classes make

it an easy-to-use and highly flexible build

framework.

5:phing

Snippet from a sample build.xml
<!-- == -->

<!-- Target: build -->

<!-- == -->

<target name="build" depends="prepare">

<echo msg="Copying files to build directory..." />

<echo msg="Copying ./about.php to ./build directory..." />

<copy file="./about.php" tofile="./build/about.php" />

<echo msg="Copying ./browsers.php to ./build directory..." />

<copy file="./browsers.php" tofile="./build/browsers.php" />

<echo msg="Copying ./contact.php to ./build directory..." />

<copy file="./contact.php" tofile="./build/contact.php" />

</target>

5:phing

Secret Sauce
Phing/Phing.php:1087(ish)

$dataDir = dirname(__FILE__).

DIRECTORY_SEPARATOR .

'..‘ .

DIRECTORY_SEPARATOR .

'data';

5:phing

Extending Phing: A new task
<?php

require_once "phing/Task.php";

class CheckTwitter extends Task {

/**

* The message passed in the buildfile.

*/

protected $hashtag = null;

protected $url = 'http://search.twitter.com/search.json';

/**

* The setter for the attribute "message"

*/

public function setHashtag($str) {

$this->hashtag = $str;

}

5:phing

Extending Phing: A new task

public function init() {

// nothing to do here

}

/**

* The main entry point method.

*/

public function main() {

$json = file_get_contents($this->url .

'?q='.

urlencode('#'.$this->hashtag));

$myFeed = json_decode($json);

foreach ($myFeed->results as $stuff=>$tweet) {

echo $tweet->text."\n---\n";

}

}

}

5:phing

Overview

• PHP doesn’t really need make or ant, however

phing is useful for a lot of repetitive tasks like

packaging and distribution.

• Surprisingly easy to use tool.

• Somewhat difficult to get working on Windows

Bringing it all together

• Small tools make big tools

• It’s fun when everything works

together.

Who Am I?

Cal Evans
Chief Marketing Officer, Blue Parabola

http://phparch.com

http://blog.calevans.com

@calevans

cal@blueparabola.com

cal@calevans.com

