
SEATTLE • PORTLAND • AUSTIN • BALTIMORE • ORLANDO

Chief Stuff Breaker/Blue Parabola
D. Keith Casey Jr

Unit Testing
Strategies

Overview

D. Keith Casey, Jr

Unit Testing Strategies

What is Unit Testing?

What's the point of Unit Testing?

Our Holy Grail

Useless Unit Testing

Deciding where to write Unit Tests

Some Useful Unit Tests

So.. who are you?

Unit Testing Strategies

• D. Keith Casey, Jr.

– Chief Stuff Breaker, Blue Parabola

– I break stuff with the underlying goal of
understanding and making it better

– Help organize php|tek, former contrib to the
DCPHP, now with AustinPHP & Flash

– Web2project Head Custodian

D. Keith Casey, Jr

What is Unit Testing?

Unit Testing Strategies

• Unit Testing is the process where individual blocks,
functions, methods, or “units” of code are tested
individually

• A pre-determined set of input is used to generate
an output which is compared against an expected
output

• Different from “Integration Testing” where the
interaction between structures is tested

D. Keith Casey, Jr

What is Unit Testing?

Unit Testing Strategies

• In plain terms:

– Unit Testing lets you know when your code
breaks. Not if, when.

– Great when you're refactoring and the guts
change but the result shouldn't

– Great for reproducing errors when you know
particular inputs break the code

D. Keith Casey, Jr

What is our goal?
• 100% code coverage

– It means that we have a test for every line of
code and all of our code works exactly as
designed

– For lack of a better term, it's “perfect”

– Right?

D. Keith Casey, Jr

Unit Testing Strategies

Unit Testing Strategies

Bzzt.

Wrong Bozo.

It doesn't mean that at all.

D. Keith Casey, Jr

Code Coverage

Unit Testing Strategies

• 100% code coverage means that when the entire
sum of all your tests are run, every line is executed
at least once

• And it means nothing else*

* Except in TDD

D. Keith Casey, Jr

class Calc {

public function add($a, $b){

 return $a+$b;
}

}

class TestCalc extends
PHPUnit_Testcase

{

public function testAdd() {
$calc = new Calc();

assertEquals(5, $calc->add(2, 3));
assertEquals(0, $calc->add(1,-1));
}

}

D. Keith Casey, Jr

Unit Testing Strategies

Unit Testing Strategies

class Calc {

public function add($a, $b){

 $_SESSION['count']++;
 $_SESSION['doh'] = true;

 return $a+$b;
}

}

D. Keith Casey, Jr

class TestCalc extends
PHPUnit_Testcase

{

public function testAdd() {
$calc = new Calc();

assertEquals(5, $calc->add(2, 3));
assertEquals(0, $calc->add(1,-1));
}

}

So what's the point?

Unit Testing Strategies

• Code Coverage in itself is a useless metric

• It does not mean your code is done, perfect, bug-
free, good, bad, or anything else..

• No matter what your PHB (or the Rails community)
says

• We need to move past code coverage..

D. Keith Casey, Jr

What do we replace it with?

Unit Testing Strategies

• Useful Tests

– A test is “useful” if it tests a new set of
conditions not previously covered

– A test that reproduces a previous bug or error
state and demonstrates its resolution is ++good

– It must test something non-trivial

D. Keith Casey, Jr

Unit Testing Strategies
D. Keith Casey, Jr

class Calc {

public function add($a, $b){

 return $a+$b;
}

}

class TestCalc extends
PHPUnit_Testcase

{

public function testAdd() {
$calc = new Calc();

assertEquals(5, $calc->add(2, 3));
assertEquals(0, $calc->add(1,-1));
}

}

Unit Testing Strategies

How in the world is this
non-trivial!?

D. Keith Casey, Jr

class Calc {

public function add($a, $b){

 return $a+$b;
}

}

class TestCalc extends
PHPUnit_Testcase

{

public function testAdd() {
$calc = new Calc();

assertEquals(5, $calc->add(2, 3));
assertEquals(0, $calc->add(1,-1));
}

}

What should we avoid?

Unit Testing Strategies

• Trivial Tests

– Trivial Tests contribute to code rot, bad inertia,
and generally make you and your team test-
resistant

– If you're writing these tests, just stop it or
tigers will eat you

– Seriously, I'll arrange it

D. Keith Casey, Jr

How should we represent this?

Unit Testing Strategies

• Useful Tests / Total Tests (higher is better?)

• Trivial Tests / Total Tests (lower is better?)

• Useful Tests / Trivial Tests (higher is better, but
divide by zero is ideal?)

• Don't ask me

D. Keith Casey, Jr

So which tests do we need?

Unit Testing Strategies

• Code is Communication

– Every line you type communicates Instructions
to the computer, intentions to your team, and
explanations to the you of six months from now

– Unit Tests must be treated the same

D. Keith Casey, Jr

When we write tests..

Unit Testing Strategies

• We have to balance many requirements

– The customer wants results

– The boss just wants it done

– We want confidence in current and future
changes

D. Keith Casey, Jr

So we have to choose carefully

Unit Testing Strategies

• First, look towards new functionality

– A scary codebase is no reason to let your
problem grow

– Start testing the new pieces now, figure it out
and even if you never get to the backlog, things
are getting better

– We communicate a new expectation

D. Keith Casey, Jr

In web2project..

Unit Testing Strategies

• Helper & Formatting functions

– These were completely new to the system and
designed to generate specifically defined blocks
of html & data

– Building tests for these let us prototype,
expand, and use them throughout the system
with confidence

D. Keith Casey, Jr

Testing new functionality

Unit Testing Strategies

• This offers some interesting options

– You can make sure new code adheres to new
QA processes like coding standards, reviews,
etc

– As you figure out how to test the new pieces,
something else will emerge..

D. Keith Casey, Jr

So we have to choose carefully

Unit Testing Strategies

• Next, look towards core functionality

– If you have classes or functions used
constantly and all over the place, add tests for
those next

– We communicate stability and intention

– The most important reason is eliminating the
pseudo-bogus bug reports

D. Keith Casey, Jr

In web2project..

Unit Testing Strategies

• Core security, filtering, and formatting

– As we built our Helpers, we found that most
were using filtered input data & combining the
results of core functions

– Testing core functions supported both the new
code (Helpers) and numerous places
throughout the system

D. Keith Casey, Jr

Testing core functionality

Unit Testing Strategies

• Gives us some interesting perspective

– New modules & functionality benefits
immediately, and even more as refactoring
occurs

– We get “free” testing all over the system with a
relatively small amount of effort and a new
pattern will emerge..

D. Keith Casey, Jr

So we have to choose carefully

Unit Testing Strategies

• Finally, test problematic functionality

– Your tests in other areas will highlight the
“annoying” parts of the system

– “Annoying” can be where the most bugs are or
it could be what is changing the most, it doesn't
matter

D. Keith Casey, Jr

In web2project..

Unit Testing Strategies

• Trevor Morse – Canadian but still an okay guy

– By sorting our issue reports by module, two
modules stood out as having nearly 50% of the
bugs, the next closest ~5%

– With the confidence from the other core
functions, adding complex tests became
possible

D. Keith Casey, Jr

But we have another opportunity

Unit Testing Strategies

• “To report a bug, we need a test”

– While bug reports without tests aren't ignored,
they are considered after the testable ones

– The Zend Framework has this
“recommendation”

– The team communicates problems

D. Keith Casey, Jr

Broken Window Theory

Unit Testing Strategies

• James Q Wilson & George L Kelling

– You set the standard for your team, group,
project, neighborhood

– As that standard lower, everyone's expectations
drop & behavior changes

– As that standard raises, expectations improve &
behavior change

– http://en.wikipedia.org/wiki/Broken_windows_theory
– http://pragprog.com/the-pragmatic-programmer/extracts/software-entropy

D. Keith Casey, Jr

http://en.wikipedia.org/wiki/Broken_windows_theory
http://pragprog.com/the-pragmatic-programmer/extracts/software-entropy

Recap

Unit Testing Strategies

We defined Unit Testing

We criticized the Holy Grail of 100% Code Coverage

We talked about the difference between Useful and Trivial Tests

We covered that code – whether project or tests – is communication

We talked about implementing tests on a project first for new functionality,
then core, then pain points.

I threatened you with tigers

D. Keith Casey, Jr

Unit Testing Strategies

Questions?

D. Keith Casey Jr, Chief Stuff Breaker

keith@blueparabola.com

Twitter/Skype/AIM/IRC: caseysoftware

D. Keith Casey, Jr

mailto:keith@blueparabola.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

