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What is Unit Testing?

What's the point of Unit Testing?

Our Holy Grail

Useless Unit Testing

Deciding where to write Unit Tests

Some Useful Unit Tests



So.. who are you?
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• D. Keith Casey, Jr.

– Chief Stuff Breaker, Blue Parabola

– I break stuff with the underlying goal of 
understanding and making it better

– Help organize php|tek, former contrib to the 
DCPHP, now with AustinPHP & Flash

– Web2project Head Custodian
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What is Unit Testing?
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• Unit Testing is the process where individual blocks, 
functions, methods, or “units” of code are tested 
individually

• A pre-determined set of input is used to generate 
an output which is compared against an expected 
output

• Different from “Integration Testing” where the 
interaction between structures is tested
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What is Unit Testing?
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• In plain terms:

– Unit Testing lets you know when your code 
breaks. Not if, when.

– Great when you're refactoring and the guts 
change but the result shouldn't

– Great for reproducing errors when you know 
particular inputs break the code
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What is our goal?
• 100% code coverage

– It means that we have a test for every line of 
code and all of our code works exactly as 
designed

– For lack of a better term, it's “perfect”

– Right?
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Bzzt.

Wrong Bozo.

It doesn't mean that at all.
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Code Coverage
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• 100% code coverage means that when the entire 
sum of all your tests are run, every line is executed 
at least once

• And it means nothing else*

* Except in TDD

D. Keith Casey, Jr



class Calc {

public function add($a, $b){

  return $a+$b;
}

}

class TestCalc extends 
PHPUnit_Testcase

{

public function testAdd() {
$calc = new Calc();

assertEquals(5, $calc->add(2, 3));
assertEquals(0, $calc->add(1,-1));
}
  
}
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class Calc {

public function add($a, $b){
 
  $_SESSION['count']++;
  $_SESSION['doh'] = true;

  return $a+$b;
}

}
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class TestCalc extends 
PHPUnit_Testcase

{

public function testAdd() {
$calc = new Calc();

assertEquals(5, $calc->add(2, 3));
assertEquals(0, $calc->add(1,-1));
}
  
}



So what's the point?
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• Code Coverage in itself is a useless metric

• It does not mean your code is done, perfect, bug-
free, good, bad, or anything else..

• No matter what your PHB (or the Rails community) 
says

• We need to move past code coverage..
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What do we replace it with?
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• Useful Tests

–  A test is “useful” if it tests a new set of 
conditions not previously covered

–  A test that reproduces a previous bug or error 
state and demonstrates its resolution is ++good

–  It must test something non-trivial
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How in the world is this
non-trivial!?

D. Keith Casey, Jr

class Calc {

public function add($a, $b){

  return $a+$b;
}

}

class TestCalc extends 
PHPUnit_Testcase
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$calc = new Calc();

assertEquals(5, $calc->add(2, 3));
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}
  
}



What should we avoid?
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• Trivial Tests

– Trivial Tests contribute to code rot, bad inertia, 
and generally make you and your team test-
resistant

– If you're writing these tests, just stop it or 
tigers will eat you

–  Seriously, I'll arrange it
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How should we represent this?
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• Useful Tests / Total Tests (higher is better?)

• Trivial Tests / Total Tests (lower is better?)

• Useful Tests / Trivial Tests (higher is better, but 
divide by zero is ideal?)

• Don't ask me
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So which tests do we need?
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• Code is Communication

– Every line you type communicates Instructions 
to the computer, intentions to your team, and 
explanations to the you of six months from now

– Unit Tests must be treated the same
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When we write tests..
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• We have to balance many requirements

– The customer wants results

– The boss just wants it done

– We want confidence in current and future 
changes
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So we have to choose carefully
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• First, look towards new functionality

– A scary codebase is no reason to let your 
problem grow

– Start testing the new pieces now, figure it out 
and even if you never get to the backlog, things 
are getting better

– We communicate a new expectation
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In web2project..
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• Helper & Formatting functions

– These were completely new to the system and 
designed to generate specifically defined blocks 
of html & data

– Building tests for these let us prototype, 
expand, and use them throughout the system 
with confidence
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Testing new functionality
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• This offers some interesting options

– You can make sure new code adheres to new 
QA processes like coding standards, reviews, 
etc

– As you figure out how to test the new pieces, 
something else will emerge..
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So we have to choose carefully
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• Next, look towards core functionality

– If you have classes or functions used 
constantly and all over the place, add tests for 
those next

– We communicate stability and intention

– The most important reason is eliminating the 
pseudo-bogus bug reports
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In web2project..
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• Core security, filtering, and formatting

– As we built our Helpers, we found that most 
were using filtered input data & combining the 
results of core functions

– Testing core functions supported both the new 
code (Helpers) and numerous places 
throughout the system
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Testing core functionality
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• Gives us some interesting perspective

– New modules & functionality benefits 
immediately, and even more as refactoring 
occurs

– We get “free” testing all over the system with a 
relatively small amount of effort and a new 
pattern will emerge..
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So we have to choose carefully

Unit Testing Strategies

• Finally, test problematic functionality

– Your tests in other areas will highlight the 
“annoying” parts of the system

– “Annoying” can be where the most bugs are or 
it could be what is changing the most, it doesn't 
matter
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In web2project..
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• Trevor Morse – Canadian but still an okay guy

– By sorting our issue reports by module, two 
modules stood out as having nearly 50% of the 
bugs, the next closest ~5%

– With the confidence from the other core 
functions, adding complex tests became 
possible
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But we have another opportunity
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• “To report a bug, we need a test”

–  While bug reports without tests aren't ignored, 
they are considered after the testable ones

–  The Zend Framework has this 
“recommendation”

–  The team communicates problems
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Broken Window Theory
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• James Q Wilson & George L Kelling

– You set the standard for your team, group, 
project, neighborhood

– As that standard lower, everyone's expectations 
drop & behavior changes

– As that standard raises, expectations improve & 
behavior change

– http://en.wikipedia.org/wiki/Broken_windows_theory
– http://pragprog.com/the-pragmatic-programmer/extracts/software-entropy 
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Recap

Unit Testing Strategies

We defined Unit Testing

We criticized the Holy Grail of 100% Code Coverage

We talked about the difference between Useful and Trivial Tests

We covered that code – whether project or tests – is communication

We talked about implementing tests on a project first for new functionality, 
then core, then pain points.

I threatened you with tigers
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Questions?

D. Keith Casey Jr, Chief Stuff Breaker

keith@blueparabola.com

Twitter/Skype/AIM/IRC: caseysoftware
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