




WRITE FOR US! If you want to bring a PHP-related topic to the attention of the professional 
PHP community, whether it is personal research, company software, or 
anything else, why not write an article for php|architect? If you would like to 
contribute, contact us, and one of our editors will be happy to help you hone 
your idea and turn it into a beautiful article for our magazine. Visit www.
phparch.com/writeforus.php or contact our editorial team at write@
phparch.com and get started!

Download this
month’s code at:

http://phparch.com/code

FEATURES

4 Editorial — Elizabeth Tucker Long 
Internet Required

6 Achieving Drupal Happiness with CCK 
— Adrian Webb
Get the Content Types You Want with Ease

51 Security Roundup — Arne Blankerts
Stalking is Becoming Too Easy

52 exit(0); — Marco Tabini
Do Developers Equal Market Share?

COLUMNS

11 FireFox For Control Freaks
Browser-based App Testing Darren Cook

20 Game Design for Web Developers
Get Your Users into the Action Kristina Chodorow

25 Connecting With the iPhone
PHP Gets Even More Cool Koen van Urk

32 Advanced Mobile Device Detection with TERA-WURFL
Help Your Site Answer the Call Steve Kamerman

39 Government and PHP
A Market Just Waiting for Innovation James Baugh

45 Savior of the Universe?
Finally, PHP and the Desktop Meet Marco Tabini

CONTENTS
March 2010



March 2010 45 www.phparch.com

FEATURE

Marco Tabiniby 

Flash Builder 4—the much anticipated successor to 
Flex Builder—is finally out. Here’s an exclusive look 
at all the juicy bits that you’ll find inside.

REQUIREMENTS

PHP 5.0+

Other Software:
• Flex Builder 4 - http://labs.adobe.com/
technologies/flashbuilder4/

http://labs.adobe.com/technologies/flashbuilder4/
http://labs.adobe.com/technologies/flashbuilder4/


March 2010 46 www.phparch.com

Savior of the Universe?

So far, 2010 has not been a particularly happy 
year for Flash—Apple’s sidewise revelation of the 
iPad’s lack of support for Adobe’s front-end tech-

nology has, depending on who you ask, either signaled 
its demise or simply highlighted the Fruit Company’s 
increasing arrogance.

I prefer to think that the iPad announcement 
highlighted a third thing: how little the general pub-
lic (technical or not) understands how much Flash 
has grown as a platform since the days of annoying 
shoot-the-monkey ads and endless intros.

Granted, both the ads and the intros are still 
around, but if you think that they represent all there 
is to know and like about Flash, you’re missing some 
rather significant pieces of the puzzle.

Flex Who?
Here at php|architect, we have been using Flash 
extensively for many years, even though you don’t 
get to see it when you’re using our site (with some 
minor exceptions, like the podcast player). In fact, 
almost our whole publishing arm is managed entirely 
using Flash.

Now, before you start thinking about our customer 
support folks spending their day trying to shoot 
monkeys in order to access a customer’s account, 
you need to know that we actually use Flash as a 
platform for building client-side applications (that 
is, software that runs natively on our computers, as 
opposed to residing in a browser).

The tool that allows us to do this is called Flex—a 
framework that builds on top of Flash to provide 
an augmented set of functionality built with the 

professional developer in mind. Once Flex comes into 
the picture, gone are timelines, assets and other 
designer-oriented notions, to be replaced with con-
cepts that a programmer will be more familiar with, 
such as classes, methods and windows.

I am, of course, oversimplifying: the timeline and 
its companions are not really gone—they’re just 
being hidden by the framework in such a way that 
they are no longer a concern.

Free, and Not So Free
The Flex framework is completely free and open 
source—you can simply visit the Adobe Labs site at 
http://www.adobe.com/products/flex/ and grab your 
very own copy.

While building full-fledged applications this way 
is entirely possible (and, in fact, convenient to set 
up your very own continuous integration environ-
ment), it is not nearly as practical as using Adobe’s 
Flex Builder, which provides a tightly-integrated IDE 
for creating applications using a much more visual 
approach.

For the last several years, I have been actively 
using Flex Builder, both for internal and external cli-
ents, and I must say that the only real drawback to 
it is the fact that it is based on Eclipse, an IDE that 
I would be perfectly happy to have never encoun-
tered in my life.

Despite its Java-ness, Flex Builder is the perfect 
tool for creating Flex applications: it features a vi-
sual environment that lets you lay out your interface 
without having to go through the typical guesswork 

that is part and parcel of HTML development (aided, 
in part, by the fact that Flex’s box model appears 
not to have been developed by the inmates of a 
Guatemalan insane asylum deep in the jungle pri-
meval), and a code editor that comes with all the 
bells and whistles that we normally associate with 
an advanced IDE: debugging, code introspection and 
completion, and so forth.

Flex, Evolved
In short, Flex Builder has everything you need to 
turn a web developer into a full-fledged Flash devel-
oper without losing their sanity. Thanks to Adobe 
AIR—a technology that extends Flex into the desk-
top space—that same developer can just as easily 
build client-side applications that run natively on a 
user’s computer instead of their browsers.

It is a clear sign of how the lines between web and 
desktop are blurring—and of how Adobe’s strategy 
in those spaces is evolving—that the two products, 
Flash and Flex, are rapidly converging into a single 
platform. Thus, it’s no surprise that the next itera-
tion of Flex Builder, which Adobe has just released 
to the general public, is called Flash Builder 4 (FB4).

As I will show you throughout the rest of this ar-
ticle, FB4 doesn’t just represent the next step in the 
evolution of Flex, but also the first step in a revolu-
tion in the way application development takes place, 
especially when taken within the larger context of 
Adobe’s suite of creative applications.

http://www.adobe.com/products/flex/


March 2010 47 www.phparch.com

Savior of the Universe?

The Development Lifecycle
Building applications (web or otherwise) is an exer-
cise that requires the involvement of different types 
of people with wildly different talents that do not 
really mix well with one another: designers, artists, 
developers, and so on.

It’s interesting to note that Adobe produces soft-
ware that caters to many of these groups—many 
designers I know use Illustrator to build their in-
terfaces (something that, I freely admit, has always 
puzzled me) and Photoshop to make them look 
pretty.

Unfortunately, the process doesn’t always work as 
well as it could. For example, Illustrator is a vector 
software, which makes it difficult to build interfaces 
on a pixel-by-pixel basis (something that designers 
seem to relish torturing frontend developers with); 
similarly, the process of translating a Photoshop file 
into an HTML document can, and often is, anything 
but simple.

The biggest hurdle, however, in the process is 
that it is strictly one-way: a Photoshop design that 
has been “sliced and diced” into HTML is essentially 
immutable—even if you use Photoshop’s built-in 
slicing features, any change to the HTML makes it 
essentially impossible to go back and alter the PSD 
file with any hopes of regenerating the HTML output.

As web applications grow in complexity and pro-
vide an increasingly richer user experience, this 
traditional model falls apart more and more quickly. 
The demand for application changes keeps growing 
as we explore the new possibilities of Web 2.0, while 

our ability to keep up with it has remained flat.
Tool developers have clearly taken note of this 

problem and have started coming up with solu-
tions—however timidly. Microsoft’s Expression 
Studio, for example, includes Blend + SketchFlow, an 
application that allows interface designers to create 
mockups and wireframes that can then be fed di-
rectly into one of the company’s other IDEs to allow 
developers to wire them to actual functionality.

With the release of Flash Builder 4, Adobe is rap-
idly moving in this direction as well. FB4 is part of 
a larger initiative that includes a new product called 
Flash Catalyst—the latter, currently in beta, allows 
designers to build interactive user interfaces that 
can then be fed into FB4 so that the developers can 
start working on them right away. Unfortunately, 
the process is currently monodirectional—meaning 
that you still can’t go back from FB4 into Catalyst 
for changes; however, building applications with the 
new workflow is a much simpler affair, and it’s not 
farfetched to expect that, as the tools mature, the 
process will become fully bidirectional.

The Emperor's New Clothes
Compared to its predecessors, it’s fairly obvious that 
a good amount of effort has gone into improving the 
look and feel of everything from the developer expe-
rience to the user interface of the applications gen-
erated by FB4. Even the installer, shown in Figure 1, 
has undergone a complete facelift and now sports a 
slick, colorful interface.

While the overall interface of the IDE (whose start-

FIGURE 1

FIGURE 2



March 2010 48 www.phparch.com

Savior of the Universe?

up screen you can see in Figure 2) retains the classic 
Eclipse look, a number of things have changed. First 
of all, FB4 does away with the integrated help of 
old, replaces it with the standard Adobe Help ap-
plication (Figure 3), which boasts a much better look 
and seems to be better integrated with the compa-
ny’s online live documentation and community sites.

More importantly, FB4 seems to be much more 

responsive than its predecessor—although I haven’t 
run any scientific benchmarks, everything from vi-
sual design to compilation is much snappier than it 
used to be in Flex Builder 3. I’m not sure if this is 
due to improved coding on Adobe’s part or the use 
of a better JVM (Java Virtual Machine)—but it’s defi-
nitely a welcome change.

Finally, the entire UI component library has been 

retooled, and a new visual theme, called Spark, has 
been introduced. The differences between Spark and 
the older Halo theme are quite substantial—as you 
can see in Figure 4, the interface looks much cleaner 
and less visually intensive than its predecessor.

Life with Flex
Like always, Flex is set up primarily to provide a 
rapid development environment for applications that 
are, at their core, data-centric thin clients—essen-
tially, the controller and view part of a model-view-
controller architecture in which the model resides 
somewhere reachable via a network operation.

This is not to say that you cannot create com-
plex applications that do not depend on a remote 

FIGURE 4

FIGURE 3



March 2010 49 www.phparch.com

Savior of the Universe?

backend of some sort—but, rather, that a number 
of facilities in FB4 are designed to facilitate the 
creation of software whose business layer resides 
somewhere else.

Whereas previous versions of FB were aimed 
primarily at the Java crowd, Adobe seems to have 
taken notice that there are plenty of PHP folks who 
are interested in making their server-side applica-
tions work more easily with Flex. The entire process 

of connecting to an external service layer has been 
greatly simplified to the point where all you need to 
do is point FB4 to your server’s web root and choose 
a file whose functionality you want to be able to ac-
cess.

FB will essentially take over from that point. Flash 

uses a protocol called AMF to marshal and serialize 
data and function calls between servers and clients. 
If your server does not include an AMF-compliant 
library, it will even offer to download and install 
a copy of Zend_AMF for you, which, although part of 
Zend Framework, can be used independently from 
the framework as a standalone library (Figure 5). 
Once Zend_AMF is installed, you can browse your PHP 
code and have FB create a proxy ActionScript3 class 
that you can use to transparently call your server-
side functions from your Flex projects.

If AMF is not your thing, FB4 features a number 
of other wizards that are designed to interface with 
traditional web services that run SOAP or that return 
XML or JSON. In these last two cases, the system 
makes a number of assumptions on how your service 
layer is set up—primarily, it expects it to follow 
general REST principles.

The proxy classes that FB’s wizards create do, of 
course, have some limitations—most significantly, 
the fact that they need to be generated from scratch 
every time the server-side functionality changes. 
This is not necessarily an issue, as long as your team 
follows proper refactoring principles.

If, like me, you prefer to create your own infra-
structure, Flex still provides some excellent facilities 
for data manipulation—from the E4X XML-handling 
functionality built into AS3 to the JSON add-on that 
is available as part of Adobe’s as3corelib project at 
http://code.google.com/p/as3corelib/. It is, in a way, 
a shame that JSON—which has become the light-
weight format of choice for web services—is not yet 
built into the language or framework themselves; on 

 1. <?xml version="1.0" encoding="utf-8"?>
 2. <s:WindowedApplication xmlns:fx="http://ns.adobe.com/mxml/2009" 
 3.       xmlns:s="library://ns.adobe.com/flex/spark" 
 4.       xmlns:mx="library://ns.adobe.com/flex/mx">
 5.    <fx:Declarations>
 6.       <s:HTTPService id="twitterService" url=
 7. "http://api.twitter.com/1/statuses/user_timeline/{username.text}.xml"
 8. useProxy="false" />
 9.    </fx:Declarations>
10.    <s:VGroup width="100%" height="100%" left="0" top="0">
11.       <s:HGroup width="100%">
12.          <s:TextInput width="100%" id="username" text="mtabini" />
13.          <s:Button label="Go" click="twitterService.send()" />
14.       </s:HGroup>
15.       <mx:DataGrid
16.          dataProvider="{twitterService.lastResult.statuses.status}"
17.          width="100%" height="100%">
18.          <mx:columns>
19.             <mx:DataGridColumn headerText="Time"
20.                dataField="created_at" width="100" />
21.             <mx:DataGridColumn headerText="Text" dataField="text"
22.                wordWrap="true" width="800" />
23.          </mx:columns>
24.       </mx:DataGrid>
25.    </s:VGroup>
26. </s:WindowedApplication>
 

LISTING 1

FIGURE 5

" Adobe seems to have 
taken notice that there 
are plenty of PHP folks 
who are interested in 
making their server-side 
applications work more 
easily with Flex.

http://code.google.com/p/as3corelib/


March 2010 50 www.phparch.com

Savior of the Universe?

the other hand, acquiring and installing as3corelib 
is as easy as downloading it from Google Code—and 
that gives you complete access to its source code.

All this functionality, of course, dovetails with 
Flex’s tightly integrated object model, so that even 
complex interface interactions can be managed by 
just wiring the right components together, thus free-
ing you to focus on the actual functionality provided 
by your application. Take, for example, the code in 
Listing 1, which when dropped into an AIR applica-
tion template, will give you a fully-functional (albeit 
rather bland) Twitter client capable of reading any 
user’s timeline. If the resulting application is, per-
haps, not that impressive, the fact that it was built 
without writing a single line of ActionScript code 
never fails to amaze me.

Something in the AIR
FB4 incorporates version two of Adobe’s AIR plat-
form, which allows you to create Flex-based desktop 
applications. As far as I’m concerned, AIR is the true 
star of the entire Flex platform. Even if you think 
that HTML5 is the way to go on the web, it’s hard 
to argue with the fact that AIR makes it essentially 
trivial for a web developer who is reasonably familiar 
with JavaScript to become a full-fledged purveyor of 
desktop applications.

AIR is usually criticized for two reasons: its inabil-
ity to accurately replicate native user interfaces and 
the limitations imposed on it by its sandbox model.

On the former point, I personally think that people 
who claim that AIR applications don’t look anything 

like their native counterparts are missing the point 
that they are not supposed to. Although it’s possible 
to create a reasonably credible approximation, the 
whole point of AIR is to provide a cross-platform 
development environment. Therefore, the differences 
in user interface appearance and behaviors between 
operating systems would make it challenging—to 
say the least—to create an application capable of 
working across multiple platforms.

On the sandbox front, however, I concur that some 
of the design decisions have been more difficult to 
understand. For example, an application built with 
AIR 1.x could not instantiate any other application 
on the system. This has now been corrected (to a 
degree) in AIR 2, where it is possible to invoke the 
default handler for a given file type. You can also 
package your AIR applications with a native execut-
able and exchange information between the two.

Finally, AIR 2 comes with two interesting new 
features: a much-enhanced networking functionality 
(including the capability of exchanging data using 
UDP and of creating inbound sockets), and direct 
access to audio input sources, such as your micro-
phone. Perhaps, this will finally make it possible to 
realize my dream of a podcast client that doesn’t re-
quire pagan sacrifices in order to work (I am running 
out of goats and chickens).

The Verdict
There is much to like in FB4—not least, the fact 
that Adobe is obviously taking Flex’s prospects very 
seriously and that they are finally treating PHP 

developers as first-class citizens.
The combination of new features and increased 

support for PHP make Flex and AIR an interesting 
platform for developing your applications on the 
web and, especially, on the desktop. Flash is clearly 
not the best solution to every problem that requires 
a dynamic user interface, but Adobe is very quickly 
expanding its reach well beyond the much-hated ads 
and video players.

While the functionality provided by AIR 2 and FB4 
are a huge step forward from what was previously 
available, there still are areas where there could be 
improvements—for example, having full access to 
locally-captured video streams, or screen sharing. 
Overall, however, Flex and AIR are as strong a plat-
form as they have ever been—and every indication 
is that they will only get better with time.

Marco Tabini is Keeper of Keys and Garbage Collector 
Extraordinaire for MTA (php|architect’s parent company) 
and Blue Parabola, LLC, where his job consists mainly of 
yelling at people over the phone (and, sometimes, over 
the Internet). Despite twenty years in the IT business, he 
still harbors the secret wish of someday becoming an 
internationally famous science fiction author.


	FEATURES
	Savior of the Universe?

	COLUMNS



