
Volume 5 Issue 4 • php|architect • 17

Aspect Oriented Software Development and PHPFEATURE

T
he object oriented approach to programming
has been popular for a number of years. While
its advantages are not often obvious for short
term projects, major development simply cannot
do without it. Object-oriented programming

languages provide the tools necessary to present business
logic in a demonstrable form. Today, UML Class diagrams
(http://en.wikipedia.org/wiki/Unified_Modeling_Language) can
even be used to develop system logic.

Demonstrable business logic makes it easier for
new participants to join in, and helps to save time for
developers that come back into the project at later stages.
It also reduces the number of mistakes, considerably.
Is implementing an object-oriented approach, alone,
enough to develop the demonstrable business logic?
Obviously not. Creating a smart, object-oriented program

architecture is not an easy task—unless you are able
to successfully implement methods described in Martin
Fowler’s book, Refactoring: Improving the Design of
Existing Code.

Yet, even now, one can not find encapsulated
functionality (crosscutting concerns) in a number
of various classes (logging, caching, synchronizing,
tracing, monitoring, debugging, security checking,
starting a transaction, opening a database connection,

by DMITRY SHEIKO

TO DISCUSS THIS ARTICLE VISIT:

http://forum.phparch.com/297

This article provides an introduction into the popular paradigm
of aspect-oriented software development (AOSD). It includes a

multitude of practical examples, provides a view of how to objectify
an abstract approach like AOSD, and helps the reader easily grasp
its essence and advantages. The article is primarily intended for

programmers working with PHP. Its aim is to demonstrate a way of
applying AOSD in PHP-based projects that already exist.

Aspect Oriented
Software Development

and PHP

PHP: 4.xx

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://forum.phparch.com/297

Volume 5 Issue 4 • php|architect • 18

Aspect Oriented Software Development and PHP

etc.). AOSD (aspect-oriented software development,
http://en.wikipedia.org/wiki/Aspect-oriented_programming) is
capable of organizing this kind of program logic.

What is AOSD?
Aspect-oriented software development is a relatively new
approach in the area of developing business applications.
This approach is based on the notion of Aspects. Each
aspect is a point of consideration for some other notion,
process or perspective. To be able to quickly discern the
underlying idea of this approach, let’s try to consider
various aspects of a Web site.

Information architecture defines a site’s structure.
Usability refers to the degree of site’s friendliness towards
the user. Graphic design determines the visual perception
of a site. The functional model describes its business
logic. All of these are various components of the Web
site development process, and each component requires
specific resources, approaches and solutions. For a project

to be successful, all of the aforementioned components
must be developed and implemented efficiently.

If this example seems too complicated, let’s consider
a simpler and more universal scheme. When an apartment
building is being designed, the architect had to first
conceive framework, then an electrical scheme, water
supply plan, and so on. Each of the stages in this
process is a different aspect, a different perspective of
the project. A similar approach can be implemented in
software development for identifying various aspects of
business logic within applications.

More than 20 years ago, Bjarne Stroustrup
(http://en.wikipedia.org/wiki/Bjarne_Stroustrup) arranged
the program code within C++ into sets of logical entities,
whose behaviour and interactions could be defined in a
number of ways (inheritance, encapsulation, abstraction,
polymorphism). This is a reliable and time-tested paradigm
of software development, known as object-oriented
programming. Yet, this approach has certain limitations
as to the decomposition of application business logic
aspects. Over the years that have passed since the
time this paradigm emerged, a number of approaches

aimed at overcoming the said limitations have emerged.
Among them are adaptive programming, composition
filters, aspect-oriented programming, hyperspaces, role-
modeling, subject-oriented programming, and so on.
Lately, the development of such approaches has moved
to the area of AOSD. As we have already pointed out, the
code that covers cross-cutting is going to be distributed
among the various modules, which will inevitably impair
the quality of the software with regard to the transparency
of business logic, its adaptability and upgradeability. The
aim of AOSD is to isolate the cross-cutting concerns and
place them outside applications’ business logic.

Let us consider an integrated Web application,
a content management system for example, and try
to imagine the points and ways that we are likely to
encounter the above-mentioned difficulties. Suppose a
certain number of system functions require converting
input data from XML to arrays. Due to the fact that, in
this case, the XML parsing aspect involves only a limited

number of functions, it doesn’t imply considerable
extension. As it is clear, in such a case there’s no need
for extensive decomposition and therefore no need for
AOSD to be implemented. The simplest and most logical
solution would be to include this procedure into the
root class method (or, otherwise, into the external class,
depending on the specific circumstances) and activate it
when it’s needed.

Yet, no manipulation of objects is going to help if we
have to monitor the productivity, and our task is to take
readings of all functions performed at their entry and
exit points. An attentive reader would suggest that we
should resort to the previous example and use a trigger
for activation or deactivation of data capture. Well,
we can only warn him or her that, should a need for
logging system transactions in specified cases arise, it
will become necessary to recall all of the details of the
program architecture and to reorganize them.

It would be much more practical to task the system
with handling specific events in certain objects, within
a given aspect. Suppose, after some time, new security
requirements have to be introduced into a large and

Aspect-oriented software development is
a relatively new approach in the area of

developing business applications.

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Bjarne_Stroustrup

Volume 5 Issue 4 • php|architect • 19

Aspect Oriented Software Development and PHP

or “JoinPoints” (method activation, class construction,
access to a class field, etc.). Languages that support
aspect-oriented programming (AOP) more commonly
employ functions for a set of points, or a “Pointcut.”
The functionality at those points is determined by the
program code which is politely referred to as Advice (in
AspectJ). Thus, aspects describe crosscutting concerns
for a specific set of system components. The components

themselves include only business logic that they are
supposed to implement. During compilation of the
program, the components are associated with aspects
(this is called the Weave).

To better grasp the basics of aspect-oriented
programming, let us once again consider the example,
which involves defining the productivity monitoring
aspect (see Figure 2). Suppose we want to take the
timer readings at each entry and exit point of all of the
methods within such classes as Model, Document, Record
and Dispatcher. So, we have to introduce into the Logging
aspect a Pointcut with the listing of all of the required
functions. To cover all of the methods of a certain class,
most AOP-supporting languages employ a special mask.
Now it is possible to define the needed Pointcut. We set
up Advice at the entry (Before) and exit (After) points
to the methods listed in the Pointcut. Usually, Advice in
AOP-supporting languages is available for such events
as Before, After and Around, though sometimes other
events are also present.

Thus, the following basic AOP declarations may be
singled out.

• Aspect–a definition of a certain set of cross-
cutting concerns performing a specific task

• Pointcut–the code of an Aspect’s applicability:
defines when and where the functionality of a
given aspect may be applied (see Figure 3)

• Advice–the code of an Aspect’s functionality:
this is what is going to be executed for the
objects listed in the Pointcut.

Still too complicated? Well, I think everything
will become clear once we introduce some practical

FIGURE 4
sophisticated project. We then create a procedure for
additional security checks and task the system with
carrying out this procedure at the activation of specified
methods within the security aspect. This is implied by
the paradigm of AOSD. We set up a new abstraction level
outside the existing program architecture, and then in it,
we declare functionality that in some way is applicable
to the whole of the system.

As you can see from Figure 3, it is possible to
define program procedures that attend the system—for
example, within the security aspect—and then place
them outside of the main classes. We can treat the input
data validation aspect procedures in the same way, thus
making the business logic more evident and demonstrable.
As a matter of fact, what we get as a result is clearly-
defined business logic in the system’s main classes and
precisely distributed outside the essential model cross-
cutting concerns.

To sum this up:
• The aspect-oriented approach is based on

the principle of identifying common program
code within certain aspects, and placing the
common procedures outside the main business
logic.

• The process of aspect orientation and software
development may include modeling, design,
programming, reverse-engineering and re-
engineering.

• The domain of AOSD includes applications,
components and databases.

• Interaction with, and integration into other
paradigms is carried out with the help of
frameworks, generators, program languages
and architecture-description languages (ADL).

Basics of Aspect-Oriented Approach
Aspect-oriented programming allows developers
to organize cross-cutting concerns into individual
declarations—aspects. It provides the possibility to
define functionality for specific program execution points,

Over the years that have passed since the
time that OOP emerged, a number of
approaches aimed at overcoming its

limitations have also emerged.

Volume 5 Issue 4 • php|architect • 20

Aspect Oriented Software Development and PHP

examples. Let’s begin with the simplest of them:
http://www.phpclasses.org/browse/package/2633.html. I wrote
this small library with the plan of demonstrating both
the advantages and availability of AOSD. Additionally,
you don’t need to know every detail of PHP or custom
software to be able to use this library. It is sufficient just
to enable aop.lib.php in your scripts in PHP 4 (or later)
in its standard configuration.

It is possible to define a certain aspect for
crosscutting concerns (let’s say, for keeping a transaction
log), through initiating the Aspect class:

$aspect1 = new Aspect();

Then we set up a Pointcut and specify the methods it
affects:

$pc1 = $aspect1->pointcut(

 “call Sample::Sample or call Sample::Sample2”);

The only thing remaining is to specify the program code
for entry and exit points for the methods of the current
pointcut:

$pc1->_before(“print ‘PreProcess
’;”);

$pc1->_after(“print ‘PostProcess
’;”);

In the same way, we can define an additional aspect, for
example:

$aspect2 = new Aspect();

$pc2 = $aspect2->pointcut(“call Sample::Sample2”);

$pc2->_before(“print ‘Aspect2 preprocessor
’;”);

$pc2->_after(“print ‘Aspect2 postprocessor
’;”);

In order to enable one or several aspects, just use the
Aspect:::apply() function:

Aspect::apply($aspect1);

Aspect::apply($aspect2);

As you probably know, before PHP 5 emerged, handling
method and class events was somewhat of a problem.
Whereas, for global events—PHP errors, for example—one
can develop a specific handler, to handle events at entry
and exit points of methods it is necessary to “manually”
insert some kind of “notifiers.” In our case we’d need to
insert special Advice::_before(); and Advice::_after();
functions:

class Sample {

 function Sample() {

 Advice::_before();

 print ‘Class initilization
’;

 Advice::_after();

 return $this;

 }

 function Sample2() {

 Advice::_before();

 print ‘Business logic of Sample2
’;

 Advice::_after();

 return true;

 }

}

As it is clear from the above example, we inserted
“notifiers” for these events before and after the method’s
business logic code. When the PHP processor finds such
a “notifier,” it checks for the active aspects. If there is
one, PHP checks for the current function specified in the
Pointcut. If the function is there, it is activated for the
given event (for example, for Advice::_before()). As you
see, it is quite simple, but what is the practical value of
this approach?

Suppose, we have inserted “notifiers” into all of the
class methods of our scripts and enabled the aop.lib.php
library. Then, one day a need arises to obtain a detailed
report on the distribution of workload among the
functions of our project. We set up an aspect and define
its Pointcut, which includes all functions within the
project:

$Monitoring = new Aspect();

$pc3 = $Monitoring->pointcut(“call *::*”);

As it is clear from the example, it’s possible to use
the *::* mask. Then, in Advice, we can employ a
conventional function for the calculation of exact time
in milliseconds:

function getMicrotime() {

 list($usec, $sec) = explode(“ “,microtime());

 return ((float)$usec + (float)$sec);

}

With this function’s help, we can take time readings
at entry points of each of the project’s functions and
compare them with the readings at the functions’ exit
points. The obtained time of the business logic operations
within the body of the function is stored in a global
report variable. The only thing remaining is to display
the report at the end of the program cycle. An example of
employing a productivity monitoring aspect is presented
in the sample_trace.php script found in the archive of the

http://www.phpclasses.org/browse/package/2633.html

Volume 5 Issue 4 • php|architect • 21

Aspect Oriented Software Development and PHP

distribution kit.
So you don’t get the impression that AOSD can only

be used for certain specific tasks, let’s consider another
example.

PHP is quite tolerant towards various types of
variables. On one hand, this is a very positive feature
because it means that there’s no need to constantly
check for compliance with the specified types and waste
time/resources with a declaration. On the other, this
could lead to errors.

When a project contains a huge number of functions,
it is quite difficult to remember the parameters to each
one. Yet, misplacing even one single argument can cause
unpredictable changes in a function’s behaviour. Can
AOSD be of help in such a situation? Definitely! Let’s
recall the diagram in Figure 3. As you see, the Document
and Record classes contain similar methods: add(),
update(), delete(), copy(), get(). A well-organized
program architecture predefines similar syntax for
these methods: add($id, $data), update($id, $data),
delete($id), copy($id1,$id2), get($id).

AOSD can help us organize the program architecture.
We can set up an input data validation aspect and define
the Pointcut for the Document() and Record() class
methods. The add(), update(), delete(), copy() and
get() entry event functions can check for the type of the
first argument. If it is not integer, an error has surely
occurred. It is also possible to set up the second Pointcut
for the add() and update() methods. In this case, we
need to check the type of the second argument, which
obviously must be an array.

In this way, we can place transaction logging outside
of the project business logic. This makes it possible to
define functions which require additional checks for
security etc., at any time.

Of particular interest is the fact that, with the help
of AOSD, we can trigger a specific system error message
to be displayed for a specified set of functions. Suppose
a number of our functions contain logic to set up WML

(WAP), WSDL (SOAP), RSS/ATOM or SVG mark-up code.
Obviously, in these cases it is unacceptable to display
HTML-code in the error message. The “notifier” in the
PHP error processor will make the system display the
message in XML, or use a non-visual means (for example,
send the notification via e-mail).

Anyone who has participated in the development
of commercial software knows how difficult it is to
solve the issue of updating the final product. Certainly,
we are all aware of the existence of version control

software—such as CVS (Concurrent Versions System
http://en.wikipedia.org/wiki/Concurrent_Versions_System). The
problem is that every new product, based on the previous
one, requires certain customization, and more often than
not, it is not at all easy to find out whether the update
is going to affect areas customized for a specific project.
Some of you have surely encountered cases when, after
an update, you had to restore the whole project from
back-up copies. Now, try to imagine a case when the
disappearance of customized features is noticed only a
long time after the update! “Well, where does AOSD come
in?” you may ask. It can enable us to address this issue:
the whole customization code can be placed outside
the project’s business logic as crosscutting concerns.
You only have to define the Aspect of interest, specify
the area of its application (Pointcut) and elaborate the
corresponding functionality code. It is worthwhile trying
to imagine exactly how this is going to work.

Let’s recall my favourite example, content management
software. Such a product is sure to contain a function
for displaying record sets (Record::getList()), and
developing code for these sets (View::applyList()).
Record::getList() receives a recordset indicator and
data selection parameters. This function produces an
array with data on the results of the selection. The
View::applyList() function receives this array at the input
point and generates the formatting code—for example,
HTML code for a table. Suppose that our product displays
a goods catalogue as such recordsets. This is a universal

Anyone who has participated in the
development of commercial software knows

how difficult it is to solve the issue of
updating the final product.

http://en.wikipedia.org/wiki/Concurrent_Versions_System

Volume 5 Issue 4 • php|architect • 22

Aspect Oriented Software Development and PHP

FIGURE 1

FIGURE 2

Volume 5 Issue 4 • php|architect • 23

Aspect Oriented Software Development and PHP

solution for a commercial product, yet for every specific
project based on this code, it is necessary to introduce
an additional column into the sets. For instance, tables
in the original product have Stock Number and Item fields,
while we need to add one more, Customer Rating, to the
new application. In order to do this, we write Advice for
the Record::getList() function, which establishes that
an additional column is inserted into the returned array
at the end of the runtime.

If the View::applyList() function is incapable of
adjusting itself automatically for the changes in the
input array, then we would have to write Advice for this
function as well.

Let’s assume that later on, the client demands that
we mark out all of the entries in the sets which include
goods not found in store at the current time. In this
case we add Advice for the View::applyList() function,
in which we check for the value of the Available in store
attribute. Notice that we may set up a separate Plugins
folder for aspect declarations and scripts that include
their functionality. Thus, we shall have a complete set
of customization features for any sort of a project stored
in one specified folder, and there will be no upgrading
problems whatsoever. We’ll be able to easily upgrade any
system scripts, except for those stored in the Plugins
folder.

Aspect-Oriented Software
Development in PHP
At present, there are a number of advanced projects,
whose authors have introduced various techniques
of AOSD implementations in PHP. The AOPHP project
(http://www.aophp.net) includes a PHP preprocessor
written in Java 1.5. We can write a usual PHP code, but
we’ll also have to notify the preprocessor of our intention
to use AOSD. To do this, we’ll use a <?AOPHP ?> structure
instead of <?PHP .. ?>. The crosscutting concerns can be
put into separate scripts.

before(): execr(add($x,$y)) | execr(sub($x,$y)){

 echo “Im About To Add/Sub $x & $y
”;

}

If necessary, these scripts can be enabled by issuing
instructions while declaring AOPHP code:

<?aophp filename=”aotest.aophp,aotest2.aophp” debug=”off”

// PHP code

?>

The Seasar.PHP project (www.seasar.org/en/php5/index.html)
employs a different approach. Its authors use XML for
structuring aspect declarations, while integration is
carried out with the help of PHP, which then executes
the resulting code through the eval() function.

FIGURE 3

http://www.oophp.net
http://www.seasar.org/en/php5/index.html
http://php.net/eval

Volume 5 Issue 4 • php|architect • 24

Aspect Oriented Software Development and PHP

The MFAOP project (www.mfaop.com) is based on an
approach slightly resembling the one I mentioned in the
above examples. The project’s author suggests that first,
one should set up a Pointcut and then use it according
to what is needed:

$pointCut = new PointCut();

$pointCut->addJoinPoint(‘Example’, ‘Foo’);

$pointCut->addJoinPoint(‘Example’, ‘Bar’);

$test1 = new Aspect($pointCut, before, ‘echo “Before

$MethodName”;’);

$test2 = new Aspect($pointCut, after, ‘echo “After $MethodName”;’);

Unlike with the aop.lib.php library, when using this
solution, there’s no need to manually insert “notifiers”
for each function. You would, however, have to install an
additional PECL Classkit extension on the server.

From my point of view, the most elegant solution has
been found by the PHPAspect project (www.phpaspect.org).
This was possible thanks to the effective use of new
capabilities provided by PHP 5—and in particular the
possibility to set up abstract classes. PHPAspect introduces
into the language of PHP a specific structure; which
presents the declared aspect in a demonstrable form.

aspect TraceOrder{

 pointcut logAddItem:exec(public Order::addItem(2));

 pointcut logTotalAmount:call(Order->addItem(2));

 after logAddItem{

 printf(“%d %s added to the cart\n”, $quantity, $reference);

 }

 after logTotalAmount{

 printf(“Total amount of the cart : %.2f €\n”,

 $thisJoinPoint->getObject()->getAmount());

 }

}

As it’s clear from the example, the interval of the
specified aspect is precisely defined. The Pointcut and
Advice are set up in a way that is so simple, that one
may think this is “native” PHP syntax. This project
provides handling capacities for 7 (!) types of Join
point events: call, execution (exec), class construction
(new), attribute write (set), attribute read (get), class
destruction (unset) and block catching (catch). There are
three possible types of Advice: before, after, around. This
project developed unusually flexible masks for defining
surveillance intervals in Pointcuts. Thus, for instance, it
is possible to assign intervals for all classes with the
specified prefix in the name:

new(*(*));

exec(* Order::addItem(2));

call(DataObject+->update(0));

To be able to install PHP Aspect, you’ll need PHP version
5.0.0 or later, and have the PEAR Console_Getopt,
Console_ProgressBar, and PHP_Beautifier libraries
installed.

This project was successfully presented last year at

FIGURE 4

AOP is obviously not going to eliminate all
bugs or develop software on its own.

http://www.mfaop.com
http://www.phpaspect.org

Volume 5 Issue 4 • php|architect • 25

Aspect Oriented Software Development and PHP

the PHP conference (http://afup.org/pages/forumphp/) in
France (this is where the project originates from), and as
for as I know, it is making good progress.

Conclusion
Obviously, AOSD is not a universal solution. AOP is not
going to eliminate all bugs or develop software on its
own. I doubt that every developer using aspect-oriented
programming will get a Nobel Prize. Moreover, this
approach is hardly going to become the dominant one

in the future: the object-oriented approach has been
popular for 20 years, yet many developers still confine
themselves to procedural code. On the other hand, the
advantages of AOSD before object-oriented programming
are as obvious as OOP’s advantages before procedural
programming.

I think I’m on the safe side if I say that developers
who use AOSD are one-step ahead of the others. Their
code is clearer, easier to perceive, it contains fewer errors
and can be easily developed. Thus, AOSD engineers are
capable of implementing larger-scale, more reliable and
versatile projects.

Importantly, AOSD does not require complete
retraining of developers. AOP doesn’t alter programming
logic drastically, as is the case with transition from
procedural to object-oriented programming. AOSD just
extends it. When developing a new program architecture,
you only extract from the objects the parts that you think
don’t fit there, and find a suitable place for them. Imagine
that for years you’ve tolerated a piece of sculpture, which
totally disagrees with the overall design of your home,
but which you treasured as a gift. Then one day you find
an inconspicuous niche in the wall where the sculpture
seems to fit perfectly. “Well then,” you’d say in that case,
“this is where it really belongs!”

Apart from all that has already been said, AOSD
is easy to get used to—unlike, for example, TDD
(http://en.wikipedia.org/wiki/Test_driven_development). At

DMITRY SHEIKO is a lead We developer at Reg Graphic Systems
(www.redgraphic.com), and has been involved in software development
since 1987. Since 1998, he has published more than 50 technical
articles in various publications, and has been working on architectural
solutions and framework development for content management
software (CMF, ECM) since 2001. Lately, Dmitry has designed a set of
CM business products, including the management platform and Web
application framework Site Sapiens (www.sitesapiens.com), and has
worked on a specification of language XML Sapiens for developers of
CMS-powered Web sites (www.xmlsapiens.org). You can visit his website
at www.cmsdevelopment.com.

AOSD is not going to become a new
technological revolution, but an

inevitable programming evolution.

first, one could try and put simple crosscutting concerns,
like logging, into aspects, and then gradually extend
decomposition of the program architecture, accumulating
various domains of the application into aspects.

Perhaps, some are confused by the fact that, at
present, PHP does not officially support AOSD. Yet, in
this very article I have presented several examples of
how you can easily integrate basic AOSD approaches on
your own. It is the essence of AOSD that is important, not
the particular way in which it is implemented. Whatever

approach you chose, if you were able to achieve efficient
decomposition in program architecture it is inevitably
going to improve the quality of your product.

Today, AOSD is supported mainly by extensions to popular
programming languages, yet the leading players in the
market are not going to stay out of it, and AOSD is gradually
finding its way into the popular programming platforms
(http://www.internetnews.com/dev-news/print.php/3106021).
AOSD is not going to become a new technological
revolution, yet evolution, on the other hand, is inevitable.
Whether you follow or take the lead is up to you. 

http://afup.org/pages/forumphp/
http://www.internetnews.com/dev-news/print.php/3106021
http://en.wikipedia.org/wiki/Test_driven_development
http://www.redgraphic.com
http://www.sitesapiens.com
http://www.xmlsapiens.org
http://www.cmsdevelopment.com

