
Refactoring
and other small animals

Marco Tabini
@mtabini

Friday, 27 January, 12

What we’ll cover

•What is refactoring

•Why refactoring is important

•When to refactor

•How to refactor safely

Friday, 27 January, 12

Show of Hands
Do you use refactoring?

Friday, 27 January, 12

“Refactoring is the process
of changing a software

system in such a way that it
does not alter the external
behaviour of the code yet

improves its internal
structure.”

Martin Fowler

Friday, 27 January, 12

“Refactoring is the process
of changing a software

system in such a way that it
does not alter the external
behaviour of the code yet

improves its internal
structure.”

Friday, 27 January, 12

“Refactoring is the process
of changing a software

system in such a way that it
does not alter the external
behaviour of the code yet

improves its internal
structure.”

Friday, 27 January, 12

“Refactoring is the process
of changing a software

system in such a way that it
does not alter the external
behaviour of the code yet

improves its internal
structure.”

Friday, 27 January, 12

Change

Friday, 27 January, 12

Consistency

Friday, 27 January, 12

Improvement

Friday, 27 January, 12

Good reasons to
refactor

Friday, 27 January, 12

Good reasons to
refactor

Code smells
Functionality smells

Too much code!
Futureproofing

Friday, 27 January, 12

Good reasons to
refactor

Code smells
Functionality smells

Too much code!
Futureproofing

Friday, 27 January, 12

Good reasons to
refactor

Code smells
Functionality smells

Too much code!
Futureproofing

Friday, 27 January, 12

Good reasons to
refactor

Code smells
Functionality smells

Too much code!
Futureproofing

Friday, 27 January, 12

Good reasons to
refactor

Code smells
Functionality smells

Extensibility
Futureproofing

Friday, 27 January, 12

Good reasons to
refactor

Code smells
Functionality smells

Extensibility
Futureproofing

Friday, 27 January, 12

Good reasons to
refactor

Code smells
Functionality smells

Extensibility
Maintainability

Friday, 27 January, 12

How do you refactor?

Friday, 27 January, 12

Well…

Friday, 27 January, 12

Before you refactor

Friday, 27 January, 12

Test!

Friday, 27 January, 12

So, about those
refactoring techniques…

Friday, 27 January, 12

So, about those
refactoring techniques…

Abstract
Break (apart)

Rename

Friday, 27 January, 12

So, about those
refactoring techniques…

Abstract
Break (apart)

Rename

Friday, 27 January, 12

So, about those
refactoring techniques…

Abstract
Break (apart)

Rename

Friday, 27 January, 12

So, about those
refactoring techniques…

Abstract
Break (apart)

Rename

Friday, 27 January, 12

Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type
replacement

<?php

class Codeworks {
 function doSomething() {
 ...
 }
}

Friday, 27 January, 12

Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type
replacement

<?php

class Codeworks {
 function loadDataFromServer() {
 ...
 }
}

Friday, 27 January, 12

Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type
replacement

<?php

class AClass {
 public $x;
}

Friday, 27 January, 12

Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type
replacement

<?php

class AClass {
 protected $_x;

 public function __get($name) {
 if ($name == 'x') {
 ...
 }
 }

 public function __set($name, $value) {
 if ($name == 'x') {
 ...
 }
 }
}

Friday, 27 January, 12

Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type
replacement

<?php

 class Cal {
 function isOnTime() {
 return 'Always, or die trying';
 }
 }

 class Marco {
 function isOnTime() {
 return 'Sometimes';
 }
 }

 class Arbi {
 function isOnTime() {
 throw new Exception("Where's Arbi?");
 }
 }

Friday, 27 January, 12

Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type
replacement

<?php

 interface BlueParabola {
 function isOnTime();
 }

 class Cal implements BlueParabola {
 function isOnTime() {
 return 'Always, or die trying';
 }
 }

 class Marco implements BlueParabola {
 function isOnTime() {
 return 'Sometimes';
 }
 }

 class Arbi implements BlueParabola {
 function isOnTime() {
 throw new Exception("Where's Arbi?");
 }
 }

Friday, 27 January, 12

Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type
replacement

<?php

 class Computer {
 const WINDOWS = 1;
 const MAC = 2;
 const LINUX = 3;

 public $_type;

 function getCost() {
 switch ($this->type) {
 case Computer::WINDOWS:
 return 'medium';

 case Computer::MAC:
 return 'high';

 case Computer::LINUX:
 return 'low';
 }
 }
 }

Friday, 27 January, 12

Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type
replacement

<?php
 interface ComputerType {
 function getCost(); function getType();
 }

 class Windows implements ComputerType {
 function getCost() { return 'medium'; }

 function getType() { return Computer::WINDOWS; }
 }

 class Computer { ...
 protected $_type;

 function __set($name, $value) {
 if ($name == 'type') {
 switch ($value) {
 case Computer::WINDOWS:
 $this->_type = new Windows;
 }
 }
 }

 function __get($name) {
 if ($name == 'type') {
 return $this->_type->getType();
 }
 }

 function getCost() {
 return $this->_type->getCost();
 }
 }

Friday, 27 January, 12

Change
Consistency
Improvement

Friday, 27 January, 12

“Refuctoring”

Friday, 27 January, 12

“Beware the
Ides of March”

– Bill Shakespeare

Friday, 27 January, 12

“Beware the
IDEs”

– Me

Friday, 27 January, 12

@mtabini

Friday, 27 January, 12

