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What we’ll cover

•What is refactoring

•Why refactoring is important

•When to refactor

•How to refactor safely
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Show of Hands
Do you use refactoring?
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“Refactoring is the process 
of changing a software 

system in such a way that it 
does not alter the external 
behaviour of the code yet 

improves its internal 
structure.”

Martin Fowler
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Change
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Consistency
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Improvement
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Good reasons to 
refactor
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Good reasons to 
refactor

Code smells
Functionality smells

Too much code!
Futureproofing
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Good reasons to 
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Good reasons to 
refactor

Code smells
Functionality smells

Extensibility
Maintainability
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How do you refactor?
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Well…
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Before you refactor
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Test!
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So, about those 
refactoring techniques…
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So, about those 
refactoring techniques…

Abstract
Break (apart)

Rename
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Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type 
replacement

<?php

class Codeworks {
    function doSomething() {
        ...
    }
}
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Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type 
replacement

<?php

class Codeworks {
    function loadDataFromServer() {
        ...
    }
}
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Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type 
replacement

<?php
    
class AClass {
    public $x;
}
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Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type 
replacement

<?php
    
class AClass {
    protected $_x;
    
    public function __get($name) {
        if ($name == 'x') {
            ...
        }
    }
    
    public function __set($name, $value) {
        if ($name == 'x') {
            ...
        }
    }
}
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Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type 
replacement

<?php
    
    class Cal {
        function isOnTime() {
            return 'Always, or die trying';
        }
    }
    
    class Marco {
        function isOnTime() {
            return 'Sometimes';
        }
    }
    
    class Arbi {
        function isOnTime() {
            throw new Exception("Where's Arbi?");
        }
    }
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Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type 
replacement

<?php
    
    interface BlueParabola {
        function isOnTime();
    }
    
    class Cal implements BlueParabola {
        function isOnTime() {
            return 'Always, or die trying';
        }
    }
    
    class Marco implements BlueParabola {
        function isOnTime() {
            return 'Sometimes';
        }
    }
    
    class Arbi implements BlueParabola {
        function isOnTime() {
            throw new Exception("Where's Arbi?");
        }
    }
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Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type 
replacement

<?php    
    
    class Computer {
        const WINDOWS = 1;
        const MAC = 2;
        const LINUX = 3;
        
        public $_type;
        
        function getCost() {
            switch ($this->type) {
                case Computer::WINDOWS:
                    return 'medium';
                    
                case Computer::MAC:
                    return 'high';
                    
                case Computer::LINUX:
                    return 'low';
            }
        }
    }
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Some Examples…
• Renaming

• Encapsulation

• Type generalization

• State/Strategy type 
replacement

<?php    
    interface ComputerType {
        function getCost(); function getType();
    }
    
    class Windows implements ComputerType {
        function getCost() { return 'medium'; }
        
        function getType() { return Computer::WINDOWS; }
    }
    
    class Computer { ...
        protected $_type;
        
        function __set($name, $value) {
            if ($name == 'type') {
                switch ($value) {
                    case Computer::WINDOWS:
                        $this->_type = new Windows;
                }
            }
        }
        
        function __get($name) {
            if ($name == 'type') {
                return $this->_type->getType();
            }
        }
        
        function getCost() {
            return $this->_type->getCost();
        }
    }
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Change
Consistency
Improvement
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“Refuctoring”
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“Beware the 
Ides of March”

– Bill Shakespeare
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“Beware the 
IDEs”

– Me
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