
Built With PHP

ALSO INSIDE

Editorial:
Building Blocks

Community Corner:
October 2014

Laravel:
Deploying Applications

Part 2: Automation

� nally{}:
Types of Open-Source

Software Projects

www.phparch.com October 2014
VOLUME 13 - ISSUE 10

php[architect] m
agazine O

ctob
er 2

0
14

B
u

ilt W
ith

 P
H

P
Volum

e 13
 Issue 10

We Built DataSi� on PHP

Protect Your Data with ownCloud

Domain Modeling with PHP
in Polyglot Systems

Test Fixtures Like a Boss

Varnish: Just Plain Faster

FREESAMPLE

 ARTICLE

Find out more and buy your ticket at
world.phparch.com

WordPress, Drupal, Joomla!, Magento, Zend Framework, Symfony, Laravel, more...

November 10 -14th 2014

Washington, D.C.

Five Amazing Keynotes...

Luke Stokes
Co-founder and CTO of

FoxyCart.com

Angela Byron
Drupal

Core Committer

Andrew Nacin
WordPress

Lead Developer

Jeffrey McQuire
Open Source Evangelist

at Acquia

The Greatest Panel on Earth!
We will have key people representing seven of the
biggest PHP frameworks and applications: WordPress,
Drupal, Magento, Joomla!, Symfony, Laravel, and Zend
Framework all together in one place to answer all your
most difficult questions!

2

I ANFORMATION SSURANCE

ANALYZE | MITIGATE | MAINTAIN

http://world.phparch.com/?utm_source=mag1014&utm_medium=pdf&utm_campaign=sample

38 | October 2014 phparch.com

Laravel Tips

Deploying Applications
Part 2: Automation

Dirk Merkel

Whether you are developing in a
local virtual machine with Laravel's

Homestead or deploying code
to AWS, automation is the name
of the game. Exploring Laravel's

support for SSH, we will learn how
to automate the updating and

deploying of applications to save
time and minimize downtime.

DisplayInfo()

Requirements:
• PHP: 5.3.7+
• MCrypt
• Composer
• Laravel 4.2

Related URLs:
• Laravel PHP Framework - http://laravel.com
• GitHub - https://github.com
• Invoice Ninja - https://www.invoiceninja.com
• Invoice Ninja source code on GitHub - https://github.com/hillelcoren/invoice-ninja
• VirtualBox - https://www.virtualbox.org
• Vagrant - http://www.vagrantup.com
• Laravel Homestead Documentation - http://laravel.com/docs/homestead
• Laravel Homestead Code on GitHub - https://github.com/laravel/homestead.git
• Amazon Web Services - https://aws.amazon.com
• Laravel Documentation: Artisan Development - http://laravel.com/docs/commands
• Laravel Documentation: SSH - http://laravel.com/docs/ssh

phparch.com
http://laravel.com
https://github.com
https://www.invoiceninja.com
https://github.com/hillelcoren/invoice-ninja
https://www.virtualbox.org
http://www.vagrantup.com
http://laravel.com/docs/homestead
https://github.com/laravel/homestead.git
https://aws.amazon.com
http://laravel.com/docs/commands
http://laravel.com/docs/ssh

 phparch.com October 2014 | 39

Laravel TipsLaravel Tips
Deploying Applications Part 2: Automation

Introduction
Having to deploy your code to development, test, QA, staging, CI, and production

environments can be a chore. What's worse is that you're more prone to make a mistake if you
have to do so manually. However, you don't have to add a devops team member because Laravel
has a solution that we can use for just this purpose. By bringing up an EC2 instance in AWS and
deploying to it, we will explore Laravel's support for SSH, which can be used to automate various
tasks, application deployment included. Wrapping SSH tasks into Artisan commands allows us to
execute these tasks easily from the command line.

Recap
In part 1 of this series (see the September 2014 issue), we set up a local development

environment for the open-source Invoice Ninja project. We did this using Laravel's officially
supported Vagrant box, Homestead. This approach allows us to separate our development
environment and all of its dependencies, such as specific versions of PHP, Apache HTTP, MySQL,
etc., from our main OS, while still keeping everything local. The shared source code directory
allows us to use our preferred editor installed on our own machine to write the code while having
PHP and Apache serve the site and execute the same code from within the VM. In my case,
I'm using Sublime Text to edit the Invoice Ninja project. I then use Google Chrome installed
on my MacBook to view the site as it is being served by PHP 5.5.x and Nginx on the Ubuntu
14.04-based virtual machine of Homestead.

To the Cloud
Let's add a production environment to which we can deploy the application, preferably with the

help of some automation. I've been making pretty heavy use of Amazon Web Services (AWS) for
several years now and that is where we will be hosting the production instance of the application.
Luckily, AWS's console provides a step-by-step wizard for launching a virtual machine. Figure
1 shows the summary screen just before I clicked the Launch button. There are three notable
choices I have made for the new EC2 instance. First, I picked Amazon Linux AMI 2014.03.2
(HVM) to be the OS on my VM. This is AWS's in-house distribution of Linux so it guarantees high
compatibility with AWS services and infrastructure, along with the lowest cost. Ubuntu 14.0.4
would have been another good choice as it is the same OS that underlies Homestead. Other
options, including Red Hat Enterprise Linux and Microsoft Windows Server 2012, are less ideal
and come with a licensing cost added to the hourly cost of the VM.

Second, I picked a t2.micro instance. The t2 family of AMIs was introduced this year and
represents a low-cost choice for non-constant and burstable performance. The t2.micro instance
I chose for this example runs at $0.013 per hour or $113.88 per year. Additional savings are
possible when committing to Reserved Instances as opposed to Spot Instances.

Third, I created a Security Group, which I called basic-access. It limits access to the server to
ports 22 (SSH), 80 (HTTP), and 443 (HTTPS). This will allow access to the hosted site(s) with a
browser on ports 80 and 443, as well as access to the server's terminal via SSH on port 22. You
can add additional ports, such as port 3306 for MySQL, but keep in mind that this server is on the
Internet and you should keep your attack surface as minimal as possible.

phparch.com

40 | October 2014 phparch.com

Laravel Tips
Deploying Applications Part 2: Automation

A summary of the EC2 instance's
configuration can be seen in Figure 1.

Lastly and most importantly for our
purposes, I selected an existing key
pair. We are talking about a public-
private key pair where the public
part gets placed on the server and I
keep the private one. This will allow
us to connect to the EC2 instance via
SSH. You can see in Figure 2 that I
selected an existing key pair that I had
generated previously. If you don't yet
have a key pair, the AWS interface will
let you generate and download one
on-the-fly.

FIGURE 1AWS EC2 Instance Launch Wizard

FIGURE 2AWS EC2 Key Pair Selection

phparch.com

 phparch.com October 2014 | 41

Laravel TipsLaravel Tips
Deploying Applications Part 2: Automation Deploying Applications Part 2: Automation

After clicking the Launch button,
AWS takes about a minute to boot up
the instance. At this point we can SSH
into the machine using the key pair we
selected in the previous step. To continue
our example, I quickly went through the
installation steps for the Invoice Ninja
site, which I can now access from the
browser using the instance's public IP
address. You can refer to part one of this
article or the Invoice Ninja site for step-
by-step installation instructions.

Let's Automate
With our cloud instance set up,

let's edit our local project so we can
communicate with it and automate some
remote command execution. Invoice
Ninja, being a Laravel project, has a file
app/config/remote.php, where we can
specify any remote servers with which we
intend to interact. Putting the connection
info for the instance we just launched in
AWS, we get the file shown in Listing 1.

The host IP address of 54.84.192.124
is the public IP of the EC2 instance. The
default user name for all EC2 instances
is ec2-user, which we assign to the
username keyword. It also shows up in
the root keyword, which specifies the
starting directory on the server. The
dirk-waferthin.pem file contains the
private portion of the key pair, but like
other key pairs generated by AWS, it has
no keyphrase.

Also note that we named this
configuration production and listed the
production server in the web group at
the end of Listing 1. Groups allow you
to execute the same command on all
servers in a group. This is obviously useful
when you want to update all the servers
in your production environment at the
same time, for example.

01. <?php
02. return array(
03. /*
04. |--
05. | Default Remote Connection Name
06. |--
07. |
08. | Here you may specify the default connection that will
09. | be used for SSH operations. This name should correspond
10. | to a connection name below in the server list. Each
11. | connection will be manually accessible.
12. */
13. 'default' => 'production',
14. /*
15. |--
16. | Remote Server Connections
17. |--
18. |
19. | These are the servers that will be accessible via the
20. | SSH task runner facilities of Laravel. This feature
21. | radically simplifies executing tasks on your servers,
22. | such as deploying out these applications.
23. |
24. */
25. 'connections' => array(
26. 'production' => array(
27. 'host' => '54.84.192.124',
28. 'username' => 'ec2-user',
29. 'password' => '',
30. 'key' => '/home/vagrant/Code/invoice-ninja'
31. . '/app/config/dirk-waferthin.pem',
32. 'keyphrase' => '',
33. 'root' => '/home/ec2-user',
34.),
35.),
36. /*
37. |--
38. | Remote Server Groups
39. |--
40. |
41. | Here you may list connections under a single group
42. | name, which allows you to easily access all of the
43. | servers at once using a short name that is extremely
44. | easy to remember, such as "web" or "database".
45. |
46. */
47. 'groups' => array(
48. 'web' => array('production')
49.),
50.);

LISTING 1

phparch.com

42 | October 2014 phparch.com

Laravel Tips
Deploying Applications Part 2: Automation

Now that we have defined our
remote configuration, we can
actually use it without having
to do anything else. Artisan,
Laravel's trusty sidekick and
command-line interface, has the
built-in tail command, which
we can use to remotely tail a log
file. Figure 3 shows the output
from the command using the
remote.php configuration from
Listing 1.

Being able to tail a remote log
file is nice, but let's take the next
step by actually running some
commands on the remote server.
We'll create an Artisan command
to update the remote server with
the latest revision from GitHub
and run any database migrations.
This command can then be used
to quickly update one or more
remote servers, for example to
deploy the most recent release to
the production environment.

We start by having Artisan create
a new command. Running the
following Artisan command will
create an empty class, which will
serve as a template for creating
our own Artisan command (all on
one line):

php artisan command:make UpdateInstance --command=remote:update

FIGURE 3Remote Tail With Artisan

01. <?php
02. use Illuminate\Console\Command;
03. use Symfony\Component\Console\Input\InputOption;
04. use Symfony\Component\Console\Input\InputArgument;
05.
06. class UpdateInstance extends Command {
07. /**
08. * The console command name.
09. * @var string
10. */
11. protected $name = 'remote:update';
12. /**
13. * The console command description.
14. * @var string
15. */
16. protected $description = 'Given a remote connection as
17. argument, this command will connect to the
18. corresponding server, update the installed version of
19. the application to the latest revision in GitHub\'s
20. master branch, and run any migrations.';
21.
22. /**
23. * Create a new command instance.
24. * @return void
25. */
26. public function __construct() {
27. parent::__construct();
28. }
29.
30. /**
31. * Execute the console command.
32. * @return mixed
33. */

LISTING 2

Continued Next Page

phparch.com

 phparch.com October 2014 | 43

Laravel TipsLaravel Tips
Deploying Applications Part 2: Automation Deploying Applications Part 2: Automation

34. public function fire() {
35. // connection against which to execute command
36. $connection = $this->argument('connection');
37. // commands to execute
38. $commands = array(
39. 'cd /home/ec2-user/invoice-ninja',
40. 'git pull origin',
41. 'php artisan cache:clear',
42.);
43. // whether to run the migrations
44. if ($this->option('migrate')) {
45. $commands[] = 'php artisan migrate';
46. }
47. // execute the commands against the connection
48. SSH::into($connection)->run(
49. $commands,
50. function($line) {
51. // display output from remote command if
52. // verbose option is given
53. if ($this->option('verbose')) {
54. // output each line
55. $this->info($line);
56. }
57. }
58.);
59. }
60.
61. /**
62. * Get the console command arguments.
63. * @return array
64. */
65. protected function getArguments() {
66. return array(
67. array('connection',
68. InputArgument::OPTIONAL,
69. 'Environment to update.',
70. 'production'
71.),
72.);
73. }
74. /**
75. * Get the console command options.
76. * @return array
77. */
78. protected function getOptions() {
79. return array(
80. array('migrate',
81. null,
82. InputOption::VALUE_NONE,
83. 'Run the migrations via Artisan.',
84. null
85.),
86.);
87. }
88. }

LISTING 2 (CONT'D)
By default, Artisan creates the
UpdateInstance class in the
app/command/ directory, but that
default can be overwritten with the
--path option. The UpdateInstance
class extends Laravel's Command class,
which in turn derives from Symfony's
powerful console components.
Because the parent classes do
much of the heavy lifting for us, we
only have to implement a couple of
methods to create our full-fledged
Artisan command.

Listing 2 shows the final
UpdateInstance class.

The $name and $description
properties contain the name with
which to invoke the command and
a short description, respectively.
After registering the command
with Artisan, we will see these
two properties appear in Artisan's
list of available commands. The
getArguments() and getOptions()
methods let us specify command
arguments and options that Artisan
will automatically parse from the
command line and make available
to our code via argument() and
option() accessor methods. It will
even generate error messages for
missing required arguments.

phparch.com

44 | October 2014 phparch.com

Laravel Tips
Deploying Applications Part 2: Automation

Both arguments and options are defined in their respective arrays. Options use the following
values:

array($name, $mode, $description, $defaultValue)

And arguments use the following values:

array($name, $shortcut, $mode, $description, $defaultValue)

We have one optional argument, connection, which defaults to production if not given.
connection indicates the server against which to execute the commands. Our only option is
migrate, which defaults to null, and indicates whether to run the database migrations after the
code update.

Now we get to the core of the remotely executing code. The fire() method contains the
code that will get executed when we call the remote:update command via Artisan. First, we get
the $connection information. Second, we create an array of the commands to execute on the
remote server. If the migrate option was given on the command line, we add the migrate Artisan
command to our array.

Remote execution of commands is provided via Laravel's SSH facade. The into() method lets
us specify the connection against which we then run() the list of commands. run() optionally
accepts a Closure as the second argument, which we use to print the remote command output to
the local console if the verbose option was given. Note that we didn't have to define the verbose
option since it comes with all generated Artisan commands.

Before actually running the command, we need to let Artisan know about it, which we do by
adding the following line to the app/start/artisan.php file:

Artisan::add(new UpdateInstance);

The results of executing the command via Artisan can be seen in Figure 4. First we ask Artisan
to list all known commands and grep for the remote:update command we just created. Seeing
the command listed, we proceed to execute the command via Artisan against the production
environment.

From the output to
the screen, we can see
that the commands
were executed.
However, there
had been no code
commits to GitHub
and consequently no
database migrations
needed to be run.

FIGURE 4Remote Command Execution With Artisan

phparch.com

 phparch.com October 2014 | 45

Laravel TipsLaravel Tips
Deploying Applications Part 2: Automation Deploying Applications Part 2: Automation

Conclusion
In this installment of our deployment automation series of articles, we created a cloud

environment for our application in AWS. We then configured a connection in Laravel that allowed
us to access that environment programmatically. After using a built-in Artisan command to tail
a remote log file on our cloud-based instance, we created our own Artisan command that used
Laravel's SSH facade to execute a series of commands on the remote server to update the code,
run database migrations, and flush the application cache.

These examples should provide a great starting point for you to explore the topic further by
creating your own automation tasks and commands. Consider the possibilities of grouping
connections and scripting more complex tasks.

In the next installment in this series, we will look at moving our remote automation tasks to
Envoy. While Laravel's SSH facade is merely a wrapper around the underlying SSH protocol,
Envoy is a full-fledged remote task runner. We will explore some of the benefits of Envoy while
continuing to work through automation examples in our cloud-based environment.

DIRK MERKEL is the CTO for Vivantech Inc. and has experience architecting solutions
and managing the software development process in large and small organizations.
His focus is on Open Source and often web-centric technologies, including Java,
PHP, Perl, Ruby, MySQL, Apache, etc.

g+ http://bit.ly/phpa_DirkMerkel

phparch.com
http://bit.ly/phpa_DirkMerkel
http://bit.ly/phpa_DirkMerkel

magazine

books

conferences

training

phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration,
API integration, devops, cloud
services, business development,
content management systems, and
the PHP community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

Built With PHP

ALSO INSIDE
Editorial:Building Blocks

Community Corner: October 2014
Laravel: Deploying Applications Part 2: Automation

fi nally{}:Types of Open-Source Software Projects

www.phparch.com

October 2014VOLUME 13 - ISSUE 10

php[architect] m
agazine O

ctob
er 2014

B
uilt W

ith
 P

H
P

Volum
e 13 Issue 10

We Built DataSift on PHPProtect Your Data with ownCloud Domain Modeling with PHP in Polyglot Systems
Test Fixtures Like a Boss

Varnish: Just Plain Faster

http://www.phparch.com/magazine/2014-2/october/?utm_source=mag1014&utm_medium=pdf&utm_campaign=sample

	Table of Contents
	Domain Modeling with PHP in Polyglot Systems
	Test Fixtures Like a Boss
	Varnish: Just Plain Faster
	We Built DataSift on PHP
	Building Blocks
	Protect Your Data with ownCloud
	Matthew Setter

	Deploying Applications
Part 2: Automation
	Dirk Merkel

	October 2014
	Joe Devon

	MONTH IN REVIEW: October HAPPENINGS
	Types of Open-Source Software Projects

