

FEATURE

2 | December 2014 www.phparch.com

Building WordPress meta boxes has gotten easier over time, but it can still
be a daunting task for a new theme or plugin developer. Fortunately, Elliot
Condon’s powerful (and free!) Advanced Custom Fields plugin makes
creating complex meta boxes, repeaters, and more a cinch. We’ll take a look
at the plugin, walk through some practical examples of building carousels,
alternate page headlines, and more, and then discuss the future of the plugin
with the upcoming ACF 5 release.

Advanced Sites Deserve
Advanced Custom Fields
Steve Grunwell

DisplayInfo()

Other Software:
•	 WordPress 3.5+
•	 Advanced Custom Fields (available in the WordPress.org plugin repository)

Related URLs:
•	 Advanced Custom Fields - http://www.advancedcustomfields.com
•	 Elliot Condon - http://www.elliotcondon.com
•	 Repeater Field add-on -

http://www.advancedcustomfields.com/add-ons/repeater-field
•	 Options Page add-on -

http://www.advancedcustomfields.com/add-ons/options-page
•	 Gallery Field -

http://www.advancedcustomfields.com/add-ons/gallery-field
•	 Flexible Content Field -

http://www.advancedcustomfields.com/add-ons/flexible-content-field
•	 ACF Add-ons - http://www.advancedcustomfields.com/add-ons
•	 Creating a new field type -

http://www.advancedcustomfields.com/resources/creating-a-new-field-type
•	 WP add_meta_box -

http://codex.wordpress.org/Function_Reference/add_meta_box
•	 Relevanssi - http://www.relevanssi.com

phparch.com
http://www.advancedcustomfields.com
http://www.elliotcondon.com
http://www.advancedcustomfields.com/add-ons/repeater-field
http://www.advancedcustomfields.com/add-ons/options-page
http://www.advancedcustomfields.com/add-ons/gallery-field
http://www.advancedcustomfields.com/add-ons/flexible-content-field
http://www.advancedcustomfields.com/add-ons
http://www.advancedcustomfields.com/resources/creating-a-new-field-type
http://codex.wordpress.org/Function_Reference/add_meta_box
http://www.relevanssi.com

 www.phparch.com December 2014 | 3

Introduction
A few years ago, I needed a plugin that would let me design

meta boxes to control custom fields on a client theme.
After evaluating a few options, I settled on Elliot Condon’s
Advanced Custom Fields (see Related URLs), and it changed
the way I looked at WordPress forever. After working with
the plugin extensively over the past several years, I rarely
approach any project without using this incredibly powerful
tool.

Using Advanced Custom Fields
As is the case with most plugins, the best way to get started

is to install it in your WordPress instance. Advanced Custom
Fields is installed in the same way as most other WordPress
plugins (either uploaded to your plugin directory or installed
through the WordPress plugin manager). After activation,
a new “Custom Fields” menu becomes available in your
WordPress admin menu.

FIGURE 1
Custom Fields menu, created by

Advanced Custom Fields

phparch.com

4 | December 2014 www.phparch.com

Advanced Sites Deserve Advanced Custom Fields

Building Your Meta
Boxes

Before we can do anything
with custom fields, we
must first create our custom
meta boxes. To do this,
we create one or more
“Field Groups” through
the “Custom Fields” menu
in the WordPress admin
menu. A field group is
a collection of one or
more custom fields, and
represents a single meta
box.

Field groups can be
assigned to multiple
post types, templates,
taxonomies, and more.
Conversely, it’s possible to
limit field groups to specific
posts, pages, taxonomies,
or pretty much any other
type of object you can think
of. Custom Field Groups
also have page-like menu
ordering/prioritization and
can be displayed in traditional meta boxes or in “seamless” mode, which forgoes the traditional meta box
look and more closely resembles the primary editor for posts and pages.

A number of custom field types are available to you right out of the box with Advanced Custom Fields.
Beyond the basics of text fields, <textarea>, <select> elements, checkboxes, and radio buttons, ACF also
gives you access to field types like “Image” (to upload or select a file from your WordPress media library),
“Taxonomy” (to select a term within one or more taxonomies), date pickers, and more. With Advanced
Custom Fields, you can even create multiple WYSIWYG editors on the same screen, which is incredibly
handy for templates that are divided into multiple sections, replacing the need for plugins like Multiple
Content Blocks.

Two specific field types, both listed under the “Layout” option group, are worth mentioning: “Message”
and “Tab”. A Message field enables you to add
blocks of HTML to the meta box, perfect for
instructions or explanations
on client sites. Meanwhile, a
Tab lets you created tabbed
meta boxes, which can clean
up your custom field interface
tremendously. Together,
these two layout field types
can make site content far
easier for clients to manage.

FIGURE 3
A custom field group utilizing both

messages and tabs

FIGURE 2
Display options for an ACF Field Group

phparch.com

 www.phparch.com December 2014 | 5

Advanced Sites Deserve Advanced Custom Fields

Displaying Custom Fields
We’ve discussed adding some custom fields, it’s time to display them in our theme. Advanced

Custom Fields includes a simple API for interacting with custom fields, the most basic of which is
get_field():

get_field(
 $field_name,
 [$post_id = $post->ID, [$format_value = true]]
)

This function retrieves a custom field with slug $field_name from $post_id (defaults to the current
post ID). The $format_value parameter can be used to disable automatic formatting of the output
(for example, running a WYSIWYG field through the typical “the_content” filters).

ACF also includes the_field(),
which accepts the same arguments
and is actually just a shortcut for
echo get_field().

Enhancing the get_field()
Function

It’s generally considered a best
practice to wrap calls to functions
defined by third-party plugins in a
function_exists() conditional in your
theme, to ensure your site doesn’t
throw “Call to undefined function” fatal
errors if the plugin is ever deactivated.
Given how important ACF content can
be in our themes, however, I find it
much more convenient to add a custom
wrapper function to my theme to handle
these checks for me. You can see my
theme_get_custom_field() wrapper
function (where “theme_” is a theme-
specific prefix to prevent function name
collisions with other themes or plugins)
in Listing 1.

Using a wrapper function like this
guarantees that my theme would
continue to function and would even
show default values, should I specify
them, if Advanced Custom Fields
were ever to be disabled. Mimicking
the_field(), I’ll often define a
theme_custom_field() function as well,
which just serves as a shortcut for
echo theme_get_custom_field().

LISTING 1

01. /**
02. * Get a custom field stored in Advanced Custom Fields
03. *
04. * By running it through this function, we ensure that we
05. * don't get fatal errors if the plugin is uninstalled or
06. * disabled (thus leaving the function undefined)
07. *
08. * @global $post
09. * @param str $key The key to look for
10. * @param int $id The post ID
11. * @param mixed $default What to return if there's nothing
12. * @return mixed (dependent upon $echo)
13. *
14. * @uses get_field()
15. */
16. function theme_get_custom_field(
17. $key, $id=null, $default = ''
18.) {
19. global $post;
20.
21. if (function_exists('get_field')) {
22. if (! $id && isset($post->ID)) {
23. $id = $post->ID;
24. }
25.
26. $result = get_field($key, $id);
27.
28. if ($result == '') {
29. $result = $default;
30. }
31.
32. // get_field() is undefined, maybe ACF is disabled?
33. } else {
34. $result = $default;
35. }
36.
37. return $result;
38. }

phparch.com

6 | December 2014 www.phparch.com

Advanced Sites Deserve Advanced Custom Fields

Example: Alternate Page Headlines

A pretty common requirement for marketing sites is the ability to change the <h1> on a page without having
to change the page object’s post_title (which then would have to be overridden in menus, URLs, etc.). To get
around this, I typically create a custom field for “Alternate Headline” and, if it exists, display that instead of
the default page title:

<h1 class="post-title"><?php
 $key = 'alternate_headline';

 // Default to the post_title
 theme_custom_field($key, null, get_the_title());
?></h1>

Wasn’t that easy? Thanks to the $default parameter for theme_custom_field() (or theme_get_custom_field())
we’re always sure to have something in the H1!

Getting Fields from Non-posts (Taxonomies, Users, etc.)

As I mentioned earlier, Advanced Custom Field groups can be applied to non-post objects, namely
taxonomies and users. As taxonomies don’t live in the wp_posts table (and thus have a different index of IDs),
ACF requires that you specify the “ID” of a taxonomy using the pattern {$term->taxonomy}_{$term->term_id}.

For example, if you were to assign a “category_image” custom field to the post category taxonomy,
retrieving the image for category ID #67 would look like this:

theme_custom_field('category_image', 'category_67');

As of Advanced Custom Fields 4.3.3, you may also pass the term object (returned from get_term()) as the ID
without having to manually construct the {$term->taxonomy}_{$term->term_id} key:

// On a category page
$term = get_queried_object();
theme_custom_field('category_image', $term);

Similarly, to retrieve custom fields from a user it’s as simple as passing an ID with the pattern
user_{$user->ID}. If, for instance, you had a “Hometown” custom field for users and wanted to display it in
the loop, you might write something like this:

$id = sprint('user_%d', get_the_author_meta('ID'));
printf(
 __('Hometown: %s', 'theme-text-domain'),
 theme_get_custom_field('hometown', $id)
);

Add-ons
There are a number of official and third-party add-ons for Advanced Custom fields, which can take the

plugin from being “extremely useful” to “holy guacamole, how did I live without these?”. Under the current
ACF 4.x version of the plugin, each add-on is installed and activated as a separate plugin. This process was
a departure from the 3.x versions (which bundled the add-ons but required users to purchase an activation
code) and is slated to change again in the coming months as ACF version 5 is rolled out to the general public

phparch.com

 www.phparch.com December 2014 | 7

Advanced Sites Deserve Advanced Custom Fields

(version 5 is in a public beta at the time
of this writing, which we’ll be discussing
a bit later).

Repeater
The Repeater Field add-on (see Related

URLs) was the first add-on I purchased
for Advanced Custom Fields and is
by far the one I get the most use out
of. With the repeater field, building
lists of repeatable interfaces is simple:
creating carousels, galleries, and other
interfaces goes from a delicate game
of copy+paste to simply clicking “Add
row” and filling out the newly created
fields. You can even set minimum and
maximum numbers of rows, to help keep
your content under control.

Using Repeater Fields in Your
Theme

Just like with singular custom fields,
there are a couple of functions for
retrieving repeater field content:
have_rows() is like WP_Query’s
have_posts() and is used for looping
through the repeater rows. Meanwhile,
the_sub_field() retrieves the sub-fields
within a row.

If you’ve done any work with the
WordPress loop, then the ACF repeater
loop will look familiar:

if (have_rows('repeater_field_name')) {
 while (have_rows('repeater_field_name')) {
 the_row();
 the_sub_field('sub_field_name');
 }
}

Of course, I also like to wrap these functions in my own function (see Listing 2), which ensures
that my theme won’t break should the repeater add-on ever get disabled. This particular wrapper
function also ensures that every sub-field key that I ask for exists (although it can be empty) and,
as a bonus, gives me a location in the source to see all the sub-field keys in one place (the third
parameter of my theme_repeater_content() function call).

To see the repeater field and our wrapper function in action, let’s look at some practical
applications.

LISTING 2

01. /**
02. * Get specified $fields from the repeater with slug $key
03. *
04. * @global $post
05. * @param str $key The custom field slug of the repeater
06. * @param int $id The post ID (default: $post->ID)
07. * @param array $fields The sub-fields to retrieve
08. * @return array
09. *
10. * @uses theme_get_custom_field()
11. * @uses has_sub_field()
12. * @uses get_sub_field()
13. */
14. function theme_get_repeater_content(
15. $key, $id = null, $fields = array()
16.) {
17. global $post;
18.
19. if (! $id) $id = $post->ID;
20. $values = array();
21.
22. if (theme_get_custom_field($key, $id, false)
23. && function_exists('has_sub_field')
24. && function_exists('get_sub_field')) {
25.
26. while (has_sub_field($key, $id)) {
27. $value = array();
28. foreach ($fields as $field){
29. $value[$field] = get_sub_field($field);
30. }
31. if (! empty($value)) {
32. $values[] = $value;
33. }
34. }
35. }
36.
37. return $values;
38. }

phparch.com

8 | December 2014 www.phparch.com

Advanced Sites Deserve Advanced Custom Fields

Designing a Carousel

Ah, the hero carousel: the universal pacifier for “every stakeholder needs to be represented at the top of the
homepage!” situations and the bane of every designer’s existence. Studies show that these performance-
killers generally don’t convert well, but when the client insists we often have to swallow our objections and
comply with their demands.

Fortunately, the ACF repeater field is the perfect tool for designing things like carousels without having to
resort to messy carousel plugins or dirty hacks (raise your hand if you’ve ever resorted to the “oh, just create
a sub-page under the homepage and we’ll load it dynamically” move). Using ACF repeaters, we can quickly
build an interface that, for example, includes an image, a title, some body copy, a page link, and the anchor
for that link:

For this interface, I just created a repeater field with five sub-fields: an image, two text fields (a headline and
the call-to-action), a textarea for the body copy, and a page link for the call-to-action’s destination. I chose to
make all but the body copy required (if there has to be a hero carousel there should be a reason), and I put
a limit of five items in the repeater (to discourage clients from putting a hundred performance-killing slides
on the homepage). Once they have more than one slide, content managers can drag the repeater items
to re-order them, and it all takes place on the same screen where they’re editing the rest of the homepage
content.

Frequently-asked Questions

Another great use for ACF repeaters is to control data formatting that might be difficult to pull off in the main
editor. As an example, let’s take a look at a common occurrence: the Frequently Asked Questions page.

FIGURE 4
A simple interface for clients to manage a hero

carousel thanks to ACF repeaters

phparch.com

 www.phparch.com December 2014 | 9

Advanced Sites Deserve Advanced Custom Fields

Semantically speaking, FAQs are perfect for
definition list (<dl>) elements. There’s a question (the
<dt>) and an answer (<dd>), and a definition list more
closely relates the two components than a simple
heading/paragraph combination might. Ultimately,
we’d want our FAQ markup to look something like
this:

<dl class="faq">
 <dt>First question?</dt>
 <dd>Answer to first question.</dd>
 <dt>Second question?</dt>
 <dd>Answer to second question.</dd>
</dl>

Unfortunately, definition lists are difficult to
pull off in TinyMCE (the WYSIWYG editor used
by WordPress) without resorting to editing the
HTML directly, which can be a deterrent for non-
developers. To make this as easy as possible for
people managing content on our site, we’ll create
a new ACF repeater field that simply prompts for a
question and an answer.

Since the FAQ will only be on a
few pages, it might make sense to
create a new page template named
“Frequently Asked Questions” for
the sake of this example (although
you could easily target a specific
page without resorting to named
WordPress templates). We’ll create a
new field group named “Frequently
Asked Questions”, and assign it to our
“Frequently Asked Questions” page
template.

When creating our repeater field, I’m going to
specify the “Question” as a text field, and give
editors a WYSIWYG editor for the answers, which
will make things like links and images much easier
for people entering content. I’ll also make both
fields required, as a question without an answer
makes no sense and an answer without a question
is…well, not a frequently asked question. When all is
said and done, our FAQ repeater interface will look
something like this:

FIGURE 5An ACF repeater designed for frequently-asked questions

phparch.com

10 | December 2014 www.phparch.com

Advanced Sites Deserve Advanced Custom Fields

To generate the definition list in our theme, we’ll use the same theme_get_repeater_content()
function we built earlier. First, we’ll start by getting our FAQs:

$fields = array('question', 'answer');
$faqs = theme_get_repeater_content('faqs', null, $fields);

Then, we’ll loop through our $faqs array to build our list:

<?php if ($faqs) : ?>
 <dl class="faqs">
 <?php foreach ($faqs as $faq) : ?>
 <dt><?php echo $faq['question']; ?></dt>
 <dd><?php echo $faq['answer']; ?></dd>
 <?php endforeach; ?>
 </dl>
<?php endif; ?>

The end result should be the same definition list markup we planned earlier, but the content
is controlled through an intuitive interface that doesn’t require content managers to edit any
markup.

Options Page
Another extremely useful add-on for Advanced Custom Fields is the Options Page add-on (see

Related URLs), which enables you to define one or more option pages within WordPress. These
pages are great for things like contact information (I like to split up the address fields into separate
custom fields so I can assemble them using Schema.org markup in the footer), default sidebar
content, or anything else that you might need to configure for more than one page at a time.

Other Add-ons
There are two other first-party add-ons for ACF: the Gallery Field (see Related URLs), which

enables you to easily create image galleries, and the Flexible Content Field (see Related URLs)
which breaks your main content into more modular components (useful in certain situations, but
probably not necessary for most sites).

In addition to the four official upgrades, there are a number of third-party add-ons for Advanced
Custom Fields, adding integrations and/or support for everything from PayPal to Gravity Forms.
You can view a complete list of first- and third-party add-ons on the ACF site (see Related URLs).

Extending ACF
If there isn’t a field type to accomplish what you need, ACF also features an API for registering

your own custom field types within the plugin. The official docs have a fantastic write-up on how
to get started with extending ACF (see Related URLs), and there are a number of custom field
types on GitHub and in links on the Advanced Custom Fields site that you can use as a jumping-
off point.

phparch.com

 www.phparch.com December 2014 | 11

Advanced Sites Deserve Advanced Custom Fields

Moving Between Environments
One of the trickiest things for developers who are getting started with Advanced Custom Fields

is managing changes across instances of a WordPress site. Having to manually re-create fields
on staging and production is tedious and prone to errors, and having more than one developer
working on the site makes the process even more complicated. Fortunately, Advanced Custom
Fields enables you to export your field group configurations in two different ways:

1.	 A XML export that can easily be imported using the WordPress Importer (Tools > Import)

2.	 A PHP file that can be included in your theme and/or plugin

The XML version is great for developers—it can be imported into a new development
environment, the fields can be modified through the “Custom Fields” admin menu, and then it
can be re-exported and checked into version control. Meanwhile, the PHP version is great for
staging and production, as it doesn’t enable the field groups to be modified, preventing your
clients from accidentally breaking the site.

As each export method has distinct advantages, I recommend exporting both versions of the
custom field configuration and keeping them both under version control. This enables other
developers to modify the custom field arrangement in a development environment by importing
the XML, then re-exporting both versions. The staging and production copies of the site will
remove the custom field groups from the database, instead loading the tamper-proof PHP
version. This also guarantees that changes can be rolled out to multiple servers at once, as a fresh
deployment would automatically contain the latest ACF configuration.

To pull this off, I export my ACF configuration to a file, usually in
wp-content/themes/{my-theme}/advanced-custom-field-export.php. Then, in my theme’s main
functions.php file, I add the following:

if (! defined('USE_LOCAL_ACF_CONFIGURATION')
 || USE_LOCAL_ACF_CONFIGURATION) {
 require_once __DIR__ .'/advanced-custom-field-export.php';
}

This guarantees that any environment not explicitly ignoring the PHP export will load it. Next, in
my development environment, I add the following to my wp-config.php file to prevent my PHP
export from getting loaded:

define('USE_LOCAL_ACF_CONFIGURATION', true);

Note: If you’re seeing double fields in your staging and/or production environments,
the custom fields are probably being defined both in the database and through the PHP
export. Simply delete the duplicate field groups from the Custom Fields menu and let
the PHP version run on your site.

Finally, to prevent clients from creating or editing custom field groups on staging or production,
you can add the following constant to your wp-config.php file to put ACF in “Lite” mode, hiding
the “Custom Fields” menu item and interfaces:

define('ACF_LITE', true);

phparch.com

12 | December 2014 www.phparch.com

Advanced Sites Deserve Advanced Custom Fields

Caveats
Like most plugins that have a profound impact

on how you work with WordPress, there can be
drawbacks to Advanced Custom Fields if you’re not
careful. To help protect your site from becoming
totally dependent on ACF, please keep the
following points in mind:

Don’t Replace/Replicate Default
WordPress Functionality

At its core, WordPress content is built around
WP_Post objects. These can be posts, pages,
attachments, or custom post types, but your main
content is stored in the wp_posts table, which has
columns for a title, content, excerpt, and more.
These fields can be exported, are heavily integrated
with the core WordPress functionality, are often
used by other plugins, and will persist long after
Advanced Custom Fields is disabled. As custom
fields are meant to supplement, not replace, the
content of your posts, it’s wise to keep as much
content as possible in the actual post object.

Similarly, familiarize yourself with custom
taxonomies before you go about trying to re-invent
the taxonomy system. You’ll save yourself hours of
work and headaches if you use ACF to enhance–not
circumvent–the way that WordPress wants to work.

Separate Theming from
Functionality

When you’re building complicated systems within
WordPress (especially for clients), there’s often an
expectation that what you build will continue to
work even after the client changes themes down the
road. In the same way that you might register things
like custom post types, taxonomies, and capabilities
in a companion plugin to preserve functionality
between themes, I would urge you to separate
theme-specific custom field groups from those
used for more functional purposes. By isolating the
components that should be available across themes
and adding their exports to a plugin (rather than a
theme), you can ensure that these features will live
on, regardless of what happens with the current
active theme.

Don’t Rely on Advanced Custom
Fields for Third-party Plugins

Unless you’re writing an add-on for Advanced
Custom Fields, it’s best to not count on (or require)
site owners to have ACF installed in order to use
your plugin. In those situations, it’s best to create
meta boxes manually (the WordPress Codex has
great instructions on creating these using core APIs,
see Related URLs) rather than relying on a third-party
plugin.

Avoid Changing Field Keys
Advanced Custom Fields will not automatically

update stored custom fields when you change the
field’s key in the field group, so it’s advisable that
once you pick a field key (and there’s content for
that field) that you leave it alone. Labels can be
changed at any time, but altering a field key will
disassociate the old data, causing you to either a)
update the key name manually in the database or b)
re-enter the data.

Search Results
Another thing to consider is that the default

WordPress search functionality doesn’t query
against custom fields—if you have major portions
of your site content living in ACF, your site search
may be less effective than you or your users would
like. To remedy this, a third-party WordPress search
plugin (I’m partial to Relevanssi, myself—see Related
URLs) might be a good route to ensuring that users
can still find everything they’re looking for on your
site.

What’s New in 5.0?
It’s an exciting time for the Advanced Custom

Fields community. Elliot is preparing the release
of Advanced Custom Fields version 5 for public
release (check the ACF website) after several
months in a public beta. Version 5 is a complete re-
build of ACF, designed to be as flexible as possible
without compromising performance.

Here is a brief run-down of some of the changes
coming in ACF 5.

phparch.com

Advanced Sites Deserve Advanced Custom Fields

ACF and ACF PRO
ACF 5 does away with the add-on via plugin model that it has used throughout the version 4

life-cycle, replacing it with a “PRO” version of the plugin that bundles all four add-ons. Pricing
starts at $25 AUD for the single-site “Personal” license, while the unlimited-site “Developer”
license will set you back a mere $100 AUD. According to Elliot, there are no recurring fees, so a
developer license will very quickly pay for itself if you work on multiple sites.

New Fields and Locations
ACF 5 introduces a new field type, “oEmbed,” which takes advantage of WordPress’ growing

number of supported oEmbed endpoints to embed rich media like audio, video, and tweets.
This new field can be placed anywhere other custom fields can be assigned, which now includes
comments, widgets, and user forms (login, registration, etc.)!

Automatic, VCS-friendly Exports
One of the most exciting features of ACF 5 is the auto-generated JSON exports. Rather than

having to remember to export the XML and PHP files, then load the PHP version in via a PHP
include (as I described earlier), simply creating a directory named “acf-json” in your theme
will prompt ACF 5 to automatically export JSON representations of your fields, which can be
imported into a new environment should you need to change the field configuration later. This
will make versioning of your custom fields nearly effortless, which is huge for people working in
team development environments.

Summary
I’ve only scratched the surface of what can be done with Advanced Custom Fields, but the more

people I talk to, the more apparent is the profound impact that this tool has had on the WordPress
developer community. I’d urge you to download a copy and take it for a spin: it might just change
how you build with WordPress.

Twitter: @stevegrunwell

STEVE GRUNWELL is a Senior Web Engineer with 10up, living and working in Columbus,
OH. When he’s not writing software, he can be found speaking at conferences, blogging
about software development, or continuing his search for the perfect cup of coffee.

 www.phparch.com December 2014 | 13

https://twitter.com/stevegrunwell
phparch.com

magazine

books

conferences

training

phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration,
API integration, devops, cloud
services, business development,
content management systems, and
the PHP community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/magazine/2014-2/october/?utm_source=mag1214&utm_medium=pdf&utm_campaign=sample

	Table of Contents

