
function hook_prepare($node) {
 if ($file = file_check_upload($field_name)) {
 $file = file_save_upload($field_name, _image_
filename($file->filename, NULL, TRUE));
 if ($file) {
 if (!image_get_info($file->uri)) {
 form_set_error($field_name, t('Uploaded file is
not a valid image'));
 return;
 }
 }
 else {
 return;
 }
 $node->images['_original'] = $file->uri;
 _image_build_derivatives($node, TRUE);
 $node->new_file = TRUE;
 }
}

function hook_form($node, &$form_state) {
 $type = node_type_get_type($node);

 $form['title'] = array(
 '#type' => 'textfield',

'',
 '#required' => TRUE, '#weight' => -5
);

 $form['field1'] = array(
 '#type' => 'textfield',
 '#title' => t('Custom field'),
 '#default_value' => $node->field1,
 '#maxlength' => 127,
);
 $form['selectbox'] = array(
 '#type' => 'select',
 '#title' => t('Select box'),
 '#default_value' => $node->selectbox,
 '#options' => array(
 1 => 'Option A',
 2 => 'Option B',
 3 => 'Option C',
),
 '#description' => t('Choose an option.'),
);

 return $form;
}

function hook_view($node, $view_mode) {
 if ($view_mode == 'full' && node_is_page($node)) {
 $breadcrumb = array();
 $breadcrumb[] = l(t('Home'), NULL);
 $breadcrumb[] = l(t('Example'), 'example');
 $breadcrumb[] = l($node->field1, 'example/' .
$node->field1);
 drupal_set_breadcrumb($breadcrumb);
 }

 $node->content['myfield'] = array(
 '#markup' => theme('mymodule_myfield', $node-
>myfield),
 '#weight' => 1,
);

 return $node;
}

Keep up to date at tek.phparch.com

The Premier Professional PHP Conference
with a Community Flair

Chicago • May 18th - 22nd
php[tek]2014

Choose between 48 sessions, 8 tutorials
and 3 different training classes.

So much content that you'll have trouble deciding
what session to go to next.

www.phparch.com January 2015
VOLUME 14 - ISSUE 1

BE THE
BOSS

GET OFF THE FREELANCE
ROLLER COASTER

CHOOSE YOUR OWN
ADVENTURE—

FREELANCER OR FOUNDER?

INSIDE

ALSO INSIDE
PHP and OS

communication

An Introduction
to NodeJS

Wisdom as a Service
World Tour

Community Corner:
January 2015

Education Station:
Getting More Advanced
with the FreeAgent API

Laravel Tips:
Non-Destructive
Session Renewal

Leveling Up:
Using a Debugger

� nally{}:
The Gas Station

Bathroom

FREE Article!

2 | January 2015 www.phparch.com

Leveling Up

Using a Debugger
David Stockton

In our first Leveling Up column, we’re going to
talk about something that should be a go-to tool
in every developer’s toolbox: debugging. We’re
going to talk about moving beyond var_dump,
print_r, and console.log to use Xdebug to
help you quickly gain insight into what your code
is doing and how to make it work like it should.
Debugging is an extremely powerful way to work
with your code that most PHP developers don’t
take advantage of enough.

DisplayInfo()

Requirements:
• PHP 5.3+, but really, get on 5.6

Other Software:
• Xdebug - http://xdebug.org
• PHP Storm or Zend Studio

phparch.com
http://xdebug.org

3 | January 2015 www.phparch.com

Leveling Up
Using a Debugger

Introduction
Welcome to the first column of our new series, Leveling Up. Each month we’ll explore

topics about upping your game, advancing your career, and becoming a better
developer. This month we’re talking about debugging, specifically debugging using
Derick Rethan’s Xdebug PHP extension. If you’re running Zend Server, it’s likely that you
already have Zend Debugger available and most of what we’ll talk about here will work
for you. There are a few differences in options and setup, but the concepts are the same.

Debugging your code using an actual debugging extension and a debugging client
can speed up your workflow by an order of magnitude compared to debugging using
var_dump, print_r, or logging methods. Using a debugger allows you to set up
breakpoints in your code, spots where your code will pause while running to allow you
view the call stack and inspect (and/or change) the values of variables, run methods, and
functions. You can then step through your code, line-by-line, and see what happens at
each step. Recently, I used a debugger to solve an issue that was occurring in our testing
environment but that I could not reproduce in development.

In this particular case, my code was sending a text message that could include a bit of
additional information about a user’s status. Under normal circumstances, a user will have
just one status (in which case it would be included), but could potentially have zero to
two or three at the most. In those cases, the status information would not be included in
the text message. In our testing environment, the message was never being queued to
be sent, but in development it was being sent every single time. I attached a debugger
to the QA environment and was able to determine that the bit of code that would fetch
the status had a problem: namely, I was expecting the query to return just one row of
data (the status), but it was returning over 71,000 records. Needless to say, there’s a large
difference between retrieving one or two records and hydrating one or two objects and
retrieving and hydrating over 71,000 records! In just a few minutes I was able to find the
missing condition on one of my joins, which was causing a cartesian join to occur. It didn’t
happen in development because I had a lot less data. Using the debugger saved days of
effort and frustration.

Getting Started
To get started with Xdebug, you’re first going to need to install it. Instructions vary quite

a lot from platform to platform, but Xdebug is available for Windows, Mac OSX, and
Linux. Your install process could be download and put a .dll in place, brew install,
yum install, apt get, or whatever your platform uses for a package manager. If
that’s not available, there’s also pecl install if you can build and install from source. For
Windows, download a copy here: http://xdebug.org/download.php. Installation
instructions for everything can be found here: http://xdebug.org/docs/install.

Once Xdebug is installed, you’ll need to refer to it in your php.ini or, again, depending
on your platform, one of the many .ini files loaded by PHP. If you installed using a
package manager, this part should already be done. It will have added a line similar to
the following:

; Enable xdebug extension module
zend_extension=/usr/lib64/php/modules/xdebug.so

phparch.com
http://xdebug.org/download.php
http://xdebug.org/docs/install

4 | January 2015 www.phparch.com

Leveling Up
Using a Debugger

Please note that the line above may differ for you depending on OS, where your extensions are
installed, etc.

There are a few more settings we’ll need to put in place for this to start working. We’ll step
through them one at a time.

xdebug.remote_enable = 1

This line allows Xdebug to connect to your debugging client (typically your IDE). What will
happen is that when Xdebug is told to start a debugging session, Xdebug on your server (web
server) will initiate a connection from itself to your IDE. By default, this will be on port 9000. If
your server cannot connect to the IP of your IDE, you will not be able to do remote debugging.

In order for Xdebug to know what to connect to, though, you must tell it. Two settings can be
used for this:

xdebug.remote_connect_back = 1

or

xdebug.remote_host = 192.168.33.1

For the first, remote_connect_back will tell Xdebug to connect back to whatever IP is
connected to the server. This can be very convenient, but it means that anyone who can access
your server can potentially debug into it, so unless you’re sure that only authorized users can
access the server, you might want to use the latter.

For the xdebug.remote_host setting, you’ll want to provide the IP of the computer you’re
running your IDE on from the perspective of the web server. In my case, I was running my web
server in a VM with an IP of 192.168.33.103. It sees my host computer (where I run PHP Storm) as
192.168.33.1.

You’ll also want to set the idekey:

xdebug.idekey = PHPSTORM

For the rest of it, the defaults should be fine, but a list of all the settings are available here:
http://xdebug.org/docs/all_settings

To make sure it’s all working, run php -v from the command line. Your output should include a
line about Xdebug similar to the following:

PHP 5.5.8 (cli) (built: Jan 17 2014 13:05:38)
Copyright (c) 1997-2013 The PHP Group
Zend Engine v2.5.0, Copyright (c) 1998-2013 Zend
Technologies with Xdebug v2.2.3, Copyright (c)
2002-2013, by Derick Rethans

phparch.com
http://xdebug.org/docs/all_settings

5 | January 2015 www.phparch.com

Leveling Up
Using a Debugger

The CLI version of PHP will read the ini settings immediately, but your web server will
need to be restarted in order for the changes to work. You should be able to see output
similar to what’s shown above if you run <?php phpinfo(); in a script you load from
your web server.

How Debugging Works
By default, Xdebug works in ‘req’ mode, meaning a debug session will be initiated

based on the request of the caller. There is also ‘jit’ mode, which will start the debugger
automatically when an error occurs. In any case,
there’s a sequence of events that happens when a
debugging session starts.

A PHP request is started with a request to debug.

Xdebug initiates a connection as a client back to
the server (the IDE) to start a two-way connection
between Xdebug and your IDE. This allows the
IDE to control the running of the PHP code you’re
debugging.

In PhpStorm, you must enable debugging. This is a small “phone” icon that is usually
red. Clicking it will turn it green.

If this icon is not enabled (green) then Xdebug will not be able to connect to the IDE
(server).

At this point, your IDE should
be ready to accept debugging
connections, so we need to start
one. First, create a breakpoint in
your code. In PhpStorm, you can
create a breakpoint by clicking in
the margin or gutter next to the
line where you want Xdebug to
stop. The red circle indicates a
breakpoint is on line 6. Xdebug
will pause the code immediately
before running line 6 (see Figure 2)

Create a breakpoint on a line of code you’re sure will run. Later on, we’ll be more
discerning in setting breakpoints, but for now we want to ensure that things are working.

Initiating Debugging
From the Web

Debugging from the web is pretty simple. You can add ?XDEBUG_SESSION_START=1
to your query params, you can set a cookie, or you can use one of the Xdebug helper
plugins for your browser of choice. These allow you to click a button to set the cookie that
tells Xdebug to debug.

FIGURE 2Creating a breakpoint

FIGURE 1Enabling debugging
in PhpStorm

phparch.com

6 | January 2015 www.phparch.com

Leveling Up
Using a Debugger

1. For Firefox: http://phpa.me/firefox-xdebug-helper.
This extension adds a small green bug icon next to the
location bar and a status icon in the lower right corner of Firefox.

2. For Chrome: http://phpa.me/chrome-xdebug-helper. Like the Firefox
extension, this adds a green bug near the location bar, allowing you
to initiate a debugging session as well as profiling or tracing. We’re
not covering profiling or tracing in this article, but this is my preferred
extension.

3. For Opera: http://phpa.me/opera-xdebug-helper. Like the others, this adds a bug
icon near the location bar so you can toggle debugging on and off.

4. For Safari: http://phpa.me/safari-xdebug-helper. This appears to work like the
Chrome extension and exposes extra functionality of Xdebug, as well as being able
to toggle debugging.

Once you’ve toggled on the debug setting or added the query string, make the request.
If everything is working, you should see a popup in PhpStorm indicating that there is an
incoming request. For best results, make sure the code in your IDE matches the code on
the server you’re debugging.

When you accept the dialog shown in Figure 4, PhpStorm will provide a mapping from
the file path on the server to the file path of your local machine. If your code follows a
standard framework MVC style layout, this mapping will not be sufficient to find the other
code, so you will need to update the mapping in the settings.

FIGURE 4Incoming debugging session

Debugging plugin
enabled in chrome FIGURE 3

phparch.com
http://phpa.me/firefox-xdebug-helper
http://phpa.me/chrome-xdebug-helper
http://phpa.me/opera-xdebug-helper
http://phpa.me/safari-xdebug-helper

7 | January 2015 www.phparch.com

Leveling Up
Using a Debugger

Open PhpStorm’s settings and go to PHP > Servers. In the newest versions of
PhpStorm, this is Languages & Frameworks > PHP > Servers. Use the search function
of the settings box if in doubt. You should see the server name that showed up in the
connection dialog.

Figure 5 shows what the mapping looks like.

As you can see, the mapping is provided to the index.php file, but we want to be able
to debug into any of our project files. To do this, click on the empty area to the right of
the root of your project and enter the absolute path on the server to those same files.
For me, this is /vagrant_web mapping to my project’s web directory. PhpStorm will use
the mapping combined with the relative paths of anything below it that hasn’t been
specified. This means that you may only need the one mapping, but if your deployment
moves things around, the mapping is flexible enough that you could specify a path to
every single file on a different place on the server. I wouldn’t ever recommend doing that,
but if you wanted to, you could.

At this point, your code is stopped and is waiting for you. Jump ahead to the the section
called Running the Debugger to follow along, or if you’re planning to debug a CLI script,
follow along in the next section.

Initiating Debugging from CLI
To start debugging from the command line, you need to set a few environment variables

before starting the debugger. Fortunately this is pretty simple.

export PHP_IDE_CONFIG="serverName=yoursevername.com"
export XDEBUG_CONFIG="idekey=PHPSTORM"

FIGURE 5Server file mapping

phparch.com

8 | January 2015 www.phparch.com

Leveling Up
Using a Debugger

If you’ve set your breakpoint from
before, you can run your script and you
should see the same sort of connection
dialog as shown in Figure 4. The setup
above will work best if you’re using the
xdebug.remote_host=<your IDE ip>.
This will cause the debugger to run on any
CLI PHP invocation (like composer, phpunit,
etc.), so it is good to be able to stop this
from happening. You can do that with the
following:

unset PHP_IDE_CONFIG
unset XDEBUG_CONFIG

My recommendation to simplify the process of starting and stopping the debugger is to make
some shell aliases and functions. Listing 1 shows what I use.

Now let’s learn how to control the debugger.

Running the Debugger
Whether you’ve started the debugger through a web or API call or through a CLI program, the

debugger acts the same. Let’s take a quick tour of the debugging interface, shown in Figure 6.

You should see two tabs, one labeled Debugger, the other Console. The Console tab will show
output from your script. Errors can appear there, too, but most of your time will probably be spent
in the Debugger tab. Going from left to right, you should see the Frames panel, the Variables
panel, and the Watch panel.

The Frames panel shows your stack trace. That is the path from one bit of code to the next as
your code runs through a series of function and method calls. The top line will be the spot where
the code is currently paused. If there are function calls that happen in the course of running your

LISTING 1

01. function mybugon() {
02. export PHP_IDE_CONFIG="serverName=myserver.dev"
03. export XDEBUG_CONFIG="idekey=PHPSTORM"
04. }
05.
06. function mybugoff() {
07. unset PHP_IDE_CONFIG
08. unset XDEBUG_CONFIG
09. }
10.
11. alias bugon="mybugon"
12. alias bugoff="mybugoff"

FIGURE 6Debugging interface in PhpStorm

phparch.com

9 | January 2015 www.phparch.com

Leveling Up
Using a Debugger

code, this stack will grow. When your code returns from a function or method, the list will shrink.
Figure 6 shows that the code is currently paused at line 6 of index.php. The {main}() part shows
that we haven’t made any function calls yet.

The next panel is the Variables panel. This panel will show common super globals (like $_SERVER
and $_COOKIE as well as $_GET and $_POST) as well as variables that are currently in scope. This
means that when your code is running in a function, you’ll see variables that have been defined or
passed into it. If you’re in a class, you’ll see $this as well as any variables created or passed into
the method you’re running.

The final panel is Watch. In this panel you can set up variables that you want to show all the time.
This could be individual parts of array variables, or even the results of function or method calls.
Please be aware that if you add watches to methods or functions with side effects, it will run them,
and you could end up with your code in a bad state.

Let’s look at the icons in the debugger interface.

In Figure 7, from top to bottom:

• The icon that looks like a green “play” button is the resume button.
It will tell the debugger to continue running until it hits another
breakpoint.

• The red stop icon says to stop the debugger and end the script
execution. This is very useful when you know the script is going to fail
or you write something incorrect to a database and you want to stop it
before it does that.

• The icon with two red circles lists all your breakpoints. You can disable,
remove, or configure your breakpoints in this screen.

• The red icon that is crossed out disables all your breakpoints. If you
want the script to continue without halting but don’t want to remove
your breakpoints, toggling this will temporarily turn off the breakpoints
and then you can resume the script. You can configure the debugger
to automatically re-enable them after the script run is complete, if
you want, but it is not the default. I’ve often run into issues thinking the debugger wasn’t
working when I had all breakpoints disabled, so be sure to check and make sure you’ve got
at least one breakpoint in code that is executed.

• The window icon can reset the debugger to the default layout, in case you’ve accidentally
closed out a tab or panel.

There are more icons below, but these are the most important for our purpose. You can discover
the use of the others if you need them in the future.

FIGURE 7

phparch.com

10 | January 2015 www.phparch.com

Leveling Up
Using a Debugger

Now for the icons along the top bar.

In Figure 8, you’ll see the most important icons in debugging. I’ve left the tabs in for context.
The green play button is the same as we discussed earlier. Starting with the first icon after the
Console tab:

• The icon with the red arrow and the lines will show the execution point. This jumps your
cursor (and view) in the code back to the line where execution is currently stopped. This is
nice when you are jumping to other bits of code to research or to predict what will happen
next, and then want to go back to see where execution is paused.

• The icon with a blue circle pointing to another is the “Step Over” button. It is one of the most
commonly used functions in the debugger. It tells the debugger to execute the current line
and go on to the next. If the current line contains a method or function call, it will execute all
the code in those calls and return control to the next executable line. Use this when you want
the function to run but don’t need to inspect anything inside of it. It is normally mapped to
F8 (learning the keyboard shortcuts will help speed up your debugging workflow).

• The icon with the single white arrow pointing to a blue circle is the “Step Into” button. It is
mapped to F7. This is the function to use when you want to step into a function. You’ll see
the Frames (call stack) increase and your cursor will move into the first line of the executed
function.

• The icon with the red arrow pointing into the blue circle is the “Force Step Into” or “Smart
Step Into” button. If you have a line with multiple function calls, you can use Step Into to run
each of them in the order they would be executed. You may only care about one of them,
though, and Force Step Into allows you to choose which method to step into and will run the
others as though you had stepped over them.

• The icon with the arrow coming out of the blue circle is the “Step out” button. When you’re
done looking at a function or method, it will run until the function completes and halt at the
line after the one that called it.

• The final icon in the top line is “Run to Cursor.” Think of this as a one-shot, temporary
breakpoint. It’s useful if you want to stay in a function but may need to get past a large loop.
It will run code until it gets to the line where you put your cursor.

There are more icons and functionality in the debugger, but I feel those are the main and most
useful bits for debugging purposes.

As you progress through your code, you’ll be able to see the value of variables in the variable
window (and change them if needed). Hover over the variables in the code window to see their
contents. If there’s an error occurring and
you’re not sure what’s causing it,
it is not uncommon to run past
the function that causes the error.
You can set a new breakpoint at
that function and on your next
run, jump right to that point and
step through that function. In this
way, you can quickly locate the
problem.

FIGURE 9Hover over a variable to view contents

phparch.com

11 | January 2015 www.phparch.com

Leveling Up
Using a Debugger

Other functionality worth noting is the ability to configure breakpoints. You can do this through
the breakpoint list icon or by right clicking on a breakpoint. You can use this to make breakpoints
that only stop when a condition is true. Imagine a situation where you’re looping over 20,000
items and you want to see what happens between the 9,999th and 10,000th. You can create a
breakpoint that stops when your counter is at 9,999. That way, you won’t have to run the loop
manually the first 9,998 times. You can also configure breakpoints to be inactive until another
breakpoint has been hit, or to log a message to the console instead of stopping execution. All of
these tools work to help you become a better and more efficient developer overall.

Conclusion
In this article, we talked about how to get your debugger set up and ready to run. Using the

debugger is one of the most valuable skills you can learn as a coder. It can greatly increase your
speed and effectiveness in finding and getting to the root of a problem. It can help you more
rapidly understand what your code is doing. Practice working with the debugger and it will
quickly become your go-to tool when you want to figure out problems and eliminate bugs in your
code.

FIGURE 10Advanced breakpoint configuration

DAVID STOCKTON is a husband, father and Software Developer. He is VP of Technology
at i3logix in Colorado leading a few teams of software developers building a very
diverse array of applications. He has two daughters, 10 and 9, who are learning to
code in a variety of languages and build circuits and a 3 year old son who has been
seen studying calculus and recursive algorithms. David is an active proponent of
TDD, APIs and elegant PHP.

Twitter: @dstockto

phparch.com
http://twitter.com/dstockto

magazine

books

conferences

training

phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration,
API integration, devops, cloud
services, business development,
content management systems, and
the PHP community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

function hook_prepare($node) { if ($fi le = fi le_check_upload($fi eld_name)) {
 $fi le = fi le_save_upload($fi eld_name, _image_

fi lename($fi le->fi lename, NULL, TRUE));
 if ($fi le) { if (!image_get_info($fi le->uri)) {
 form_set_error($fi eld_name, t('Uploaded fi le is

not a valid image')); return; }
 }
 else {
 return; }
 $node->images['_original'] = $fi le->uri;
 _image_build_derivatives($node, TRUE);
 $node->new_fi le = TRUE; }
}

function hook_form($node, &$form_state) {
 $type = node_type_get_type($node); $form['title'] = array('#type' => 'textfi eld', '#title' => check_plain($type->title_label),

 '#default_value' => !empty($node->title) ? $node->title :

'',
 '#required' => TRUE, '#weight' => -5
);

 $form['fi eld1'] = array('#type' => 'textfi eld', '#title' => t('Custom fi eld'),
 '#default_value' => $node->fi eld1,
 '#maxlength' => 127,);
 $form['selectbox'] = array('#type' => 'select', '#title' => t('Select box'),
 '#default_value' => $node->selectbox,
 '#options' => array(1 => 'Option A', 2 => 'Option B', 3 => 'Option C',),

 '#description' => t('Choose an option.'),
);

 return $form;}

function hook_view($node, $view_mode) {
 if ($view_mode == 'full' && node_is_page($node)) {

 $breadcrumb = array(); $breadcrumb[] = l(t('Home'), NULL);
 $breadcrumb[] = l(t('Example'), 'example');

 $breadcrumb[] = l($node->fi eld1, 'example/' .

$node->fi eld1); drupal_set_breadcrumb($breadcrumb);
 }

 $node->content['myfi eld'] = array(
 '#markup' => theme('mymodule_myfi eld', $node-

>myfi eld),
 '#weight' => 1,);

 return $node;}

Keep up to date at tek.phparch.com

The Premier Professional PHP Conferencewith a Community Flair

Chicago • May 18th - 22nd

php[tek]2014

Choose between 48 sessions, 8 tutorialsand 3 diff erent training classes. So much content that you'll have trouble decidingwhat session to go to next.

www.phparch.com

January 2015VOLUME 14 - ISSUE 1

php[architect] m
agazine January 2015

BE TH
E BO

SS

Volum
e 14 Issue 1

BE THE
BOSS

GET OFF THE FREELANCE ROLLER COASTER
CHOOSE YOUR OWN ADVENTURE—FREELANCER OR FOUNDER?

INSIDE

ALSO INSIDE
PHP and OS communication

An Introduction
to NodeJS

Wisdom as a Service World Tour
Community Corner: January 2015
Education Station: Getting More Advanced with the FreeAgent API

Laravel Tips: Non-Destructive Session Renewal
Leveling Up:Using a Debugger

� nally{}:The Gas Station
Bathroom

http://www.phparch.com/subscribe?utm_source=sample0115&utm_medium=pdf&utm_campaign=subscribe

