
FREE

Article!

2 | July 2015 www.phparch.com

FEATUREFEATURE

PHP is normally used to write synchronous code that is run on
a per-request basis within a web server. However, PHP can
also be used to create stand-alone long-running programs.
These programs often need to handle many clients or tasks
at once without blocking on a single task. Asynchronous
operations allow many tasks to be performed cooperatively
without blocking, but PHP does not immediately lend itself to
asynchronous programming. Icicle is a library to facilitate writing
asynchronous code using synchronous coding techniques to
create asynchronous programs written using only PHP.

Writing Asynchronous
Code in PHP with Icicle
Aaron Piotrowski

Asynchronous programming has been popularized in
the last few years, particularly by node.js, a server-side
interpreter for JavaScript. Asynchronous programs
use non-blocking I/O to create a single thread of
execution that can continuously run available tasks
without waiting for an external operation to complete.
Asynchronous code can be difficult to write and debug
due to its reliance on callback functions that generally
cannot return values or throw exceptions.

Icicle (https://github.com/icicleio/Icicle) is a library
for writing asynchronous code in PHP that does more
than simply enable asynchronous programming.
Icicle uses promises to create cooperative coroutines
that allow programmers to use synchronous coding
techniques to write asynchronous code.

What is Asynchronous
Programming?

A synchronous program defines a set of sequential
instructions (statements, function calls, etc.) that
are executed in order, from top to bottom. If data
is needed from a resource outside of that program,
such as accessing a file or making a network request,
the program waits until the external operation has
completed before continuing execution. This is called
a blocking request, since the execution of the program
is blocked until the external operation has completed.

PHP scripts are generally written using blocking
requests. For example, calling the function
file_get_contents() to fetch the contents of a file

phparch.com
https://github.com/icicleio/Icicle

 www.phparch.com July 2015 | 3

DisplayInfo()

Requirements:
•	 PHP 5.5+
•	 Composer—http://getcomposer.org

Related URLs:
•	 Homepage—https://icicle.io
•	 Source—https://github.com/icicleio/Icicle
•	 Documentation—https://github.com/icicleio/Icicle/wiki

will block execution of the script until the operation has completed. While the process is blocked, no other code
can be run within that PHP process.

Asynchronous programs rely on non-blocking code to continuously process available tasks within a single thread
of execution. Operations are only made with data that are immediately available. Because all data required
by most programs cannot be immediately available, requests need to be made for data outside the program.
Asynchronous programs must then use a different strategy for external operations that would normally cause the
program to block. To avoid blocking, asynchronous programs use functions that also accept a callback function
that is executed once the external request has been completed. Instead of blocking until the request is completed,
the program is able to continue execution even though the result of the request is not available. The example b
shows an example of such a function from node.js that resolves the IP address of a domain.

dns.resolve('example.com', 'A', function (err, addresses) {
 // Callback invoked when operation completes or fails.
});
// Code below is executed immediately.

phparch.com
http://getcomposer.org
https://icicle.io
https://github.com/icicleio/Icicle
https://github.com/icicleio/Icicle/wiki

4 | July 2015 www.phparch.com

Writing Asynchronous Code in PHP with Icicle

Execution does not block on the call to dns.resolve(), rather the function only initiates the operation and
returns immediately. Any code after the call to dns.resolve() is immediately executed, before the DNS query
has completed. The result of the DNS query will not be available until the callback passed to the function is
invoked when the query has completed.

Asynchronous programs rely on an event loop that schedules tasks and invokes callbacks when an event occurs
(known as the reactor pattern). An event might be the completion of an external task, available data on a network
socket, or expiration of a timer. Event callbacks are executed in an unpredictable order because they often
depend on the timing of external operations. The call to dns.resolve() in Listing 1 is really scheduling a series
of tasks in the event loop that will resolve the DNS query. The final step in this series of tasks will be to invoke the
callback function with a list of IP addresses (or with an error).

Creating an Event Loop
PHP does not include an event loop implementation, so to build an asynchronous framework such as Icicle, an

event loop must be created from pieces available in the language. Fortunately, the PHP core includes all the
components necessary to create an event loop, no extensions required! (There are some extensions available to
create event loops that are more performant; more on this later.)

An event loop needs to provide some essential functionality to build an asynchronous program. This includes—
but is not limited to—polling network sockets for available data and executing timers along with scheduling and
invoking callback functions. The stream_select() function included in PHP uses the select() system call to
poll stream sockets for available data or the ability to write to the stream socket. This function accepts arrays of
stream sockets and a timeout, then blocks until either one of the streams can be read from or written to without
blocking or until the timeout has expired. The timeout parameter given to stream_select() is based on other
conditions in the event loop. If there are other events pending in the loop, the timeout can be 0 to quickly poll
for stream socket data, returning immediately from stream_select(). If there are timers in the event loop, the

UPCOMING TRAINING COURSES

Jump Start PHP
starts July 6, 2015

PHP Foundations for Drupal 8
starts July 14, 2015

PHP Essentials
starts July 23, 2015

SugarCRM PHP Essentials
starts July 23, 2015

Developing on Drupal
starts August 10, 2015

Developing on WordPress
starts August 24, 2015

Advanced PHP Development
starts August 28, 2015

www.phparch.com/training

Get up and running fast with
PHP, WordPress,

Web Security & Drupal!

4 | July 2015 www.phparch.com

phparch.com
http://training.phparch.com/?utm_source=sample0715&utm_medium=pdf&utm_campaign=training
phparch.com

 www.phparch.com July 2015 | 5

Writing Asynchronous Code in PHP with Icicle

timeout parameter can be set to the
remaining time on the next pending
timer. stream_select() may
return before the timeout expires if
there are data available on a stream
socket, but it will not block longer
than the timeout given. If there are
no timers, the timeout may be null,
causing stream_select() to block
indefinitely.

One scenario cannot be covered
using stream_select() alone: if
there are no stream sockets in the
event loop waiting to read or write,
but there are pending timers. In
this case, the time_nanosleep()
function is used to sleep the process
until the next pending timer expires.

Icicle combines stream_select()
and time_nanosleep() to create
an event loop that will work on any
installation of PHP. Listing 1 contains
pseudo-code based on the event
loop implementation in Icicle that
uses these two functions.

The code in Listing 1 provides
some insight into how the core
components of PHP can be used
to create an event loop but is
only a small portion of an entire
event loop implementation.
Listing 1 provides no details
on how callbacks are associated with stream
sockets or how timers and scheduled functions
are invoked. If this interests you, please take a look
at the source of the Loop component of Icicle at
https://github.com/icicleio/Icicle/tree/master/
src/Loop.

There are two PHP extensions currently supported by
Icicle that can provide a more performant event loop:
event and libevent. Both are based on the libevent
event notification library, which must also be installed
to compile either PHP extension. These extensions
move much of the event loop logic from PHP code to C
code, improving performance. These extensions also
use a faster internal mechanism to poll sockets for data
compared to select(), such as kqueue() or poll(),
further improving performance.

Getting Started
Icicle can be installed with Composer by

adding the icicleio/icicle package to
your project requirements using the command
composer require icicleio/icicle (or similar
depending the path to Composer on your system).
This package contains all the basic components
necessary to write an asynchronous program in PHP,
including an event loop and additional tools to make
writing asynchronous code easier, which will be
examined in the following sections.

The code snippet below shows how an executable
PHP script can be created with Icicle that can be run
from the command line or as a daemon.

#!/usr/bin/env php
<?php
require 'vendor/autoload.php';
// Create server or initial tasks.
Icicle\Loop\Loop::run(); //Run event loop.

LISTING 1

01. <?php
02. /*
03. * $poll and $await are arrays of stream sockets to poll for
04. * data or space to write. $timeout is null or the maximum
05. * number of seconds to block.
06. */
07.
08. if ($poll || $await) {
09. $seconds = (int)$timeout;
10. $microseconds = ($timeout - $seconds) * 1e6;
11.
12. $read = $poll;
13. $write = $await;
14. $except = null;
15.
16. $count = stream_select(
17. $read,
18. $write,
19. $except,
20. null === $timeout ? null : $seconds,
21. $microseconds
22.);
23.
24. if ($count) {
25. // $read and $write modified to contain only stream
26. // sockets with pending data or space to write.
27. // Invoke callbacks associated with stream sockets.
28. }
29. } elseif (0 < $timeout) {
30. $seconds = (int)$timeout;
31. $nanoseconds = ($timeout - $seconds) * 1e9;
32. time_nanosleep($seconds, $nanoseconds);
33. }

phparch.com
https://github.com/icicleio/Icicle/tree/master/src/Loop
https://github.com/icicleio/Icicle/tree/master/src/Loop

6 | July 2015 www.phparch.com

Writing Asynchronous Code in PHP with Icicle

A script using Icicle should first create a
server or an initial set of tasks, then call
Icicle\Loop\Loop::run() to run the event
loop. This method does not return until the event
loop is stopped or there are no pending tasks in
the event loop.

The class Icicle\Loop\Loop acts as an accessor
to the active event loop instance, providing
methods for polling sockets and creating tasks
in the event loop. An event loop instance
is automatically created based on available
extensions, but automatic creation can be
overridden using Icicle\Loop\Loop::init() if
your application requires a specific or custom event
loop implementation.

For more on installation and on using
Icicle, please see the documentation at
https://github.com/icicleio/Icicle/wiki.

Promises
Asynchronous programs can be difficult to write

and debug, as callback functions that cannot return
values or throw exceptions must rely on side effects to
control program flow. A callback function for a single
operation can be easy to write, but what happens
when another asynchronous operation is initiated in
a callback function that then invokes another callback
function when it completes, and then that operation
initiates another operation that invokes yet another
callback function? This results in a set of nested
callback functions, often referred to as “callback hell.”

Promises offer a solution to not only avoid “callback
hell” but also a means to model problems using
interdependencies between values synonymous with
functional composition in synchronous programming.
Instead of accepting a callback function as a parameter,
asynchronous operations in components designed for
Icicle return promises.

Promises are objects that act as placeholders for the
future value of an asynchronous operation. A promise
may be in one of three states: pending, fulfilled, or
rejected. Pending promises may either be fulfilled or
rejected with any value (note that in Icicle, if a promise
is rejected with a non-exception, it is encapsulated in
an exception.) Once a promise is fulfilled or rejected
(resolved), it cannot become pending again, and the
resolution value cannot change. A promise may also
be resolved with another promise, adopting the state
of that promise, fulfilling or rejecting with the same
value as the resolving promise.

Callback functions are the primary way of accessing
the resolution value of promises. Unlike other APIs
that use callbacks, promises provide an execution
context for callback functions, allowing them to
return values and throw exceptions. Callback
functions are registered to a promise using the
then() method (PromiseInterface refers to
Icicle\Promise\PromiseInterface):

PromiseInterface PromiseInterface::then(
 callable $onFulfilled = null,
 callable $onRejected = null
);

This method accepts two callback functions: the first
is executed if the promise is fulfilled and the second if
the promise is rejected. Each callback is given a single
parameter, either the fulfillment value or rejection
reason (exception). then() returns a new promise
that is fulfilled with the return value of the invoked
callback or rejected with the exception thrown from
the invoked callback. Listing 2 shows an example of a
call to then() on a promise.

If the on-fulfilled callback is omitted, the promise
returned from then() will be fulfilled with the same
value as that of the parent promise. If the on-rejected
callback is omitted, the promise returned from then()
will be rejected with the same exception as the parent
promise.

Calls to then() can be chained together to create
a sequence of interdependent operations in a time-
independent way, as registered callback functions
are only invoked once a promise is resolved. If a
promise has already been resolved when a callback
is registered with then(), the callback will still be
invoked with the resolution value of the promise.
Either of the two callbacks may also be omitted when
calling then().

LISTING 2

01. <?php
02. $promise2 = $promise1->then(
03. function ($value) {
04. // Executed if $promise1 is fulfilled.
05. // Fulfills or rejects $promise2.
06. },
07. function (Exception $exception) {
08. // Executed if $promise1 is rejected.
09. // Fulfills or rejects $promise2.
10. }
11.);

phparch.com
https://github.com/icicleio/Icicle/wiki

 www.phparch.com July 2015 | 7

Writing Asynchronous Code in PHP with Icicle

Icicle promises also include several other
methods for registering callbacks with
different behaviors. A few of the more
important and useful methods are listed
below.

•	 done(callable $onFulfilled = null,
callable $onRejected = null):
Similar to then() but returns nothing
instead of another promise. Callbacks
registered with done() should consume
the fulfillment value or handle rejection,
as return values are ignored and any
exceptions thrown from a callback
registered with done() cannot be
caught.

•	 capture(callable $onRejected):
Registers a callback function to handle
rejection. If a type-hint is given for the
exception parameter, the callback
function will only be invoked if the
rejection exception type matches the
type-hint. Acts like the catch portion of
a try/catch block.

•	 cleanup(callable $onResolved):
Called when the promise is resolved
(either fulfilled or rejected). Acts like the
finally portion of a try/catch/finally
block.

Listing 3 shows a simple example of how
calls to methods on promises can be chained
together to transform a value and handle
errors.

Note that omitting the on-rejected callback
from calls to then() in Listing 3 allow errors
to propagate down the chain to the callback
defined in the call to capture(). Structuring
a promise chain in this way is analogous to a
try/catch block in synchronous code.

The callback functions in Listing 3 are
simple and only meant to demonstrate how
method calls on promises may be chained
together. Each callback could initiate another
asynchronous operation, returning a promise
that would resolve the promise originally
returned from then() or capture(). This
allows multiple asynchronous operations to
be interdependent without creating a tree of nested, imperative callbacks. Registering callback functions with
then() simply defines dependencies between operations; it does not imply anything about when a value will
be available. The order in which operations are executed is determined from these dependencies, similar to
functional composition in a synchronous program.

Listing 4 demonstrates a more practical use of promises. This example uses the promise-based DNS and socket
components of Icicle to asynchronously resolve the IP addresses for a domain name and then connects to the first

LISTING 3

01. <?php
02. $promise
03. ->then(function ($value) {
04. if (0 === $value) {
05. throw new Exception('Value cannot be 0.');
06. }
07. return 100 / $value;
08. })
09. ->then(function ($value) {
10. return $value * $value;
11. })
12. ->then(function ($value) {
13. return log($value);
14. })
15. ->capture(function (Exception $exception) {
16. return 0;
17. })
18. ->done(function ($value) {
19. printf("Value: %f\n", $value);
20. });

LISTING 4

01. <?php
02. use Icicle\Dns\Executor\Executor;
03. use Icicle\Dns\Resolver\Resolver;
04. use Icicle\Socket\Client\Connector;
05.
06. $connect = function ($domain, $port) {
07. $resolver = new Resolver(new Executor('8.8.8.8'));
08.
09. // Method below returns a promise.
10. $promise1 = $resolver->resolve($domain);
11.
12. $promise2 = $promise1->then(
13. function (array $ips) use ($port) {
14. $connector = new Connector();
15. // Method below returns a promise.
16. // $promise2 adopts state of returned promise.
17. return $connector->connect($ips[0], $port);
18. }
19.);
20.
21. return $promise2;
22. };
23.
24. $promise = $connect('example.com', 80);

phparch.com

8 | July 2015 www.phparch.com

Writing Asynchronous Code in PHP with Icicle

of the resolved IP addresses.

$promise1 in Listing 4 will either be fulfilled with
an array of IP addresses or rejected if resolving the
domain fails. When $promise1 fulfills, the on-fulfilled
callback function registered to $promise1 will be
invoked, fulfilling $promise2 with the connected
client socket if connecting to the IP address succeeds,
otherwise rejecting $promise2 if connecting
fails. If $promise1 is rejected, $promise2 will be
immediately rejected without invoking the callback
function, so no connection attempt will be made.

Coroutines
Promises provide an execution context for callback

functions and a means to define interdependencies
between values, but they do not eliminate the need
to create callback functions. To make using promises
simpler and avoid registering callback functions to
promises, Icicle combines promises and generators to
create interruptible functions called coroutines.

Generators usually use the yield keyword to yield a
value from a set to implement an iterator. Generators
written to be coroutines use the yield keyword to
define interruption points, temporarily interrupting
execution of the coroutine. The local scope of the
coroutine is preserved between interruptions, so local
variables maintain their value and execution resumes
at the point at which it was interrupted. Coroutines are
also cooperative, allowing tasks such as I/O, timers,
and other coroutines to run whenever a value is
yielded from a coroutine.

When a coroutine yields a promise, execution of the
coroutine is interrupted and does not resume until the
promise is resolved. Once the promise resolves, the
fulfillment value will be sent to the generator, or the
exception used to reject the promise
will be thrown into the generator.
This means if a yielded promise is
fulfilled, the statement that yielded the
promise will evaluate to the fulfillment
value of the promise. For example,
$value = (yield $promise); will
set $value to the fulfillment value of
$promise when the coroutine resumes.
If a yielded promise is rejected, the
statement that yielded the promise
would behave identically to a throw
statement that threw the exception
used to reject the promise. No
callbacks need to be registered on the
yielded promise. The fulfillment value

of the promise can be accessed through a simple
variable assignment to the yield statement. Exceptions
rejecting the promise are thrown into the coroutine
and can be caught using try/catch blocks.

Coroutines in Icicle are also promises. A coroutine
is fulfilled with the last value yielded (or fulfillment
value of the last yielded promise) and rejected if an
exception is thrown from the coroutine’s generator.
(Note that generators in PHP 7 will be able to explicitly
return values and will be used in the future to return
values from coroutines.) A coroutine may then yield to
other coroutines, interrupting execution of the calling
coroutine until the yielded coroutine has completed
execution. If the coroutine throws an exception (is
rejected), the exception will be thrown into the calling
coroutine. This allows coroutines to be composed of
other coroutines, allowing coroutines to be built using
functional composition. Calling a coroutine within
another coroutine is similar to synchronously calling a
function that can return a value or throw an exception.
Coroutines may also yield generators directly to create
another coroutine and automatically yield to that
coroutine, removing the need to explicitly create a
coroutine from a generator within another coroutine.

Listing 5 demonstrates how the code using promises
in Listing 4 can be rewritten into a coroutine to avoid
registering callbacks on promises.

Instead of registering a callback to access the
fulfillment value of the promise returned by
$resolver->resolve(), the array of IP addresses is
simply assigned to $ips when the promise is fulfilled.
If the promise is rejected, the exception will be thrown
into the coroutine, bypassing the remaining code and
immediately rejecting the coroutine.

LISTING 5

01. <?php
02. use Icicle\Coroutine\Coroutine;
03. use Icicle\Dns\Executor\Executor;
04. use Icicle\Dns\Resolver\Resolver;
05. use Icicle\Socket\Client\Connector;
06.
07. $connect = function ($domain, $port) {
08. $resolver = new Resolver(new Executor('8.8.8.8'));
09. $ips = (yield $resolver->resolve($domain));
10.
11. $connector = new Connector();
12. yield $connector->connect($ips[0], 80);
13. };
14.
15. $coroutine = new Coroutine($connect('example.com', 80));

phparch.com

 www.phparch.com July 2015 | 9

Writing Asynchronous Code in PHP with Icicle

Example: RESTful DNS Service
Icicle is designed to make creating web services quick and easy. Listing 7 contains a complete PHP script

that implements a simple RESTful DNS service. The service accepts GET requests for URIs of the form
/{domain-name}/{record-type} (e.g., http://localhost:8053/example.com/a), performs the
corresponding DNS query, and responds with the results in JSON format.

Although it would be better to delegate the tasks in the code in Listing 7 to separate functions or methods of
a class, this example is meant to demonstrate how a simple yet powerful server can be created with extremely
little code. The server in Listing 7 is capable of handling many clients simultaneously because all the tasks
necessary to process a client request are performed asynchronously and cooperatively.

Because coroutines make promises much easier to use, Listing 5 can be quickly improved with a loop to
attempt to connect to other IP addresses resolved for the domain if the first does not succeed. Creating loops
based on promise fulfillment values or rejection reasons is considerably simpler in a coroutine versus using
promises alone. Listing 6 shows how a simple foreach loop can be used in a coroutine with loop termination
determined by the resolution of a promise.

LISTING 6

01. <?php
02. use Icicle\Coroutine\Coroutine;
03. use Icicle\Dns\Executor\Executor;
04. use Icicle\Dns\Resolver\Resolver;
05. use Icicle\Socket\Client\Connector;
06.
07. $connect = function ($domain, $port) {
08. $resolver = new Resolver(new Executor('8.8.8.8'));
09. $ips = (yield $resolver->resolve($domain));
10.
11. $connector = new Connector();
12. foreach ($ips as $ip) {
13. try {
14. yield $connector->connect($ip, 80);
15. return; // Halts coroutine execution.
16. } catch (Exception $exception) {
17. // Ignore connection failure and try next IP.
18. }
19. }
20.
21. // Could not connect to any IP, so reject coroutine.
22. throw new Exception(
23. sprintf('Error connecting to %s:%d', $domain, $port)
24.);
25. };
26.
27. $coroutine = new Coroutine($connect('example.com', 80));

phparch.com

10 | July 2015 www.phparch.com

Writing Asynchronous Code in PHP with Icicle

Going Forward
Icicle includes all the basic

components needed to create an
asynchronous network server or
client written in only PHP. Writing
truly asynchronous code means
never using any code that will result
in a blocking call. Unfortunately,
most of the functions available in
PHP that access an external data
source will block because they were
designed to be used in sequential,
synchronous code. Currently, this
represents the biggest hurdle to
writing asynchronous code in PHP.
However, there are many fantastic
libraries available for PHP that do
not make blocking calls and can
be used within asynchronous code,
such as dependency injection
containers, collection libraries,
validators, routers, and many others.

To get the most out of Icicle,
asynchronous-compatible
components are needed to replace
any operations that would block. At
the time of this writing, only two
additional components are available
for Icicle:

•	 DNS: Asynchronous DNS
query resolver.

•	 HTTP: Create an asynchronous
HTTP server or perform
asynchronous HTTP requests.

LISTING 7

01. #!/usr/bin/env php
02. <?php
03. require __DIR__ . '/vendor/autoload.php';
04.
05. use Icicle\Dns\Exception\FailureException;
06. use Icicle\Dns\Exception\InvalidTypeException;
07. use Icicle\Dns\Exception\MessageException;
08. use Icicle\Dns\Executor\Executor;
09. use Icicle\Http\Message\RequestInterface;
10. use Icicle\Http\Message\Response;
11. use Icicle\Http\Server\Server;
12. use Icicle\Loop\Loop;
13.
14. $executor = new Executor('8.8.8.8');
15.
16. $server = new Server(function (RequestInterface $request)
17. use ($executor) {
18. $response = new Response();
19. $response = $response->withHeader(
20. 'Content-Type',
21. 'application/json'
22.);
23.
24. if ($request->getMethod() !== 'GET') {
25. yield $response->getBody()->end(
26. json_encode(['error' => 'Only GET allowed.'])
27.);
28. yield $response->withStatus(405);
29. return;
30. }
31.
32. if (!preg_match(
33. '/^\/((?:[a-z0-9\-]+\.)*[a-z]{2,})\/([a-z0-9]+)$/i',
34. $request->getRequestTarget(),
35. $matches
36.)
37.) {
38. yield $response->getBody()->end(
39. json_encode(['error' => 'Invalid uri format.'])
40.);
41. yield $response->withStatus(404);
42. return;
43. }
44.
45. list(, $domain, $type) = $matches;
46.
47. try {
48. $message = (
49. yield $executor->execute($domain, $type)
50.);
51. } catch (InvalidTypeException $e) {
52. yield $response->getBody()->end(
53. json_encode(['error' => 'Invalid record type.'])
54.);

Continued Next Page

phparch.com

 www.phparch.com July 2015 | 11

Writing Asynchronous Code in PHP with Icicle

Additional components listed
below are currently planned. If you
are interested in contributing to
any of these components or would
like to propose another component,
please contact the project on
Twitter @icicleio or on GitHub at
https://github.com/icicleio or send an
e-mail to hello@icicle.io.

•	 Process: Runs a command
in a separate process that
can be communicated with
asynchronously. Can be used to
run a process that makes blocking
calls alongside an asynchronous
process.

•	 File System: Read and write files
asynchronously.

•	 Web Socket: Implements the
web socket protocol to create
asynchronous web socket servers
and clients.

•	 Memcached: Asynchronous
client to memcached.

•	 Redis: Asynchronous client to
Redis.

•	 MySQL: Asynchronous client for
MySQL.

LISTING 7 (CONT'D)

55. yield $response->withStatus(404);
56. return;
57. } catch (FailureException $e) {
58. yield $response->getBody()->end(
59. json_encode(['error' => 'Invalid domain name.'])
60.);
61. yield $response->withStatus(404);
62. return;
63. } catch (MessageException $e) {
64. yield $response->getBody()->end(
65. json_encode(['error' => 'DNS lookup failed.'])
66.);
67. yield $response->withStatus(503);
68. return;
69. }
70.
71. $json = [];
72.
73. foreach ($message->getAnswerRecords() as $record) {
74. $json[] = [
75. 'type' => $record->getType(),
76. 'ttl' => $record->getTtl(),
77. 'rdata' => (string)$record->getData()
78.];
79. }
80.
81. yield $response->getBody()->end(json_encode($json));
82.
83. yield $response->withStatus(200);
84. });
85.
86. $server->listen(8053, '127.0.0.1');
87. Loop::run();

Twitter: @trowski2002

AARON PIOTROWSKI is an avid computer programmer, web designer,
photographer, and coffee lover. He first obtained a BS in Biochemistry and
Biotechnology, then an MS in Computer Science. He started programming
with PHP3 in 1999 and continues to use PHP more than any other language.

 www.phparch.com July 2015 | 11

phparch.com
https://github.com/icicleio
mailto:hello%40icicle.io?subject=
http://twitter.com/trowski2002
phparch.com

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com
http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2015-6,july

