
FREE
Article!

2 | August 2015 www.phparch.com

FEATURE

2 | August 2015 www.phparch.com

FEATURE

Once upon a time, PHP was simply a way to extend
HTML, instead of writing static HTML like this:

Page 1:

<h1>About Us</h1>

Page 2:

<h1>Products</h1>

PHP lets you make a single file and do this:

echo "<h1>$pageTitle</h1>";

Why do we draw neat little boxes around one CMS or another
instead of using bits of one system and bits of another? Even
though CMSs are supposed to offer modularity and avoid the
need for hooking up massive bits of code to each other they only
do so within their own walled garden of modules and plugins.
What happens if you push this boundary and throw multiple
systems at a single HTTP request?

How Many CMSs Can You Fit
Inside a Website?
Julian Egelstaff

DisplayInfo()

Related URLs:
•	 Drupal—http://drupal.org
•	 Formulize—http://www.freeform.ca/en/formulize

Like all good technical ideas,
PHP’s complexity and usefulness
grew...

phparch.com
phparch.com
http://drupal.org
http://www.freeform.ca/en/formulize

 www.phparch.com August 2015 | 3

DisplayInfo()

It didn’t take long for people to figure out that they
were using PHP in the same way repeatedly on many
different websites. Like all good technical ideas, PHP’s
complexity and usefulness grew in response to these
discoveries about how it was being used. Before long,
PHP started to look like this:

Logic:

$page = $database->get($page_id);
$template->assign($page);

Template:

<h1>{$page->pageTitle}</h1>

At this point, our story splits into two paths. Down
one path lies the land of frameworks of various shapes
and sizes: Zend Framework, Symfony, CakePHP, eZ
Components, and CodeIgniter, to name just a handful.

Down the other path lies the land of content
management systems (CMSs), which also come in all
different shapes and sizes: PHP-Nuke, Joomla, TikiWiki,
Drupal, TYPO3, and WordPress, to name just a few.

The paths have crossed from time to time, as a
number of CMSs have incorporated some frameworks
into their codebases. Notably, Drupal 8 is highly
dependent on Symfony 2.

phparch.com

4 | August 2015 www.phparch.com

How Many CMSs Can You Fit Inside a Website?

One Language. Multiple Dialects.
As a result of all this work and evolution, we have at our disposal some incredibly powerful tools for creating and

managing websites. We have also ended up with a whole series of silos, with distinct ecosystems developing
around different shards of the overall PHP landscape.

Code that is written with one framework in mind may or may not be easy to refactor to use with a different
framework. On the CMS side, the problem is particularly pronounced, as plugins written for WordPress cannot in
any way be directly installed or used in Drupal or any other CMS.

We’ve ended up with a mountain of open source PHP code, which is trapped inside de facto proprietary-style
walled gardens! When the code you’re concerned with is on the framework side, you can always opt to spend the
time to refactor and connect different pieces of code together. But what about when you’re on the CMS side?

The whole point of using a CMS is often speed and efficiency, both of initial deployment and also in making
changes. That includes changes to content and to configuration, which should all be point and click, not code
based. Therefore, if you want to use features from multiple CMSs, refactoring a great deal of code is likely to be
so time consuming that it will fail a cost-benefit analysis. CMS users also often lack ongoing access to developers
who can maintain complex code customizations. How can you get the best of two CMS worlds in one website,
with minimal effort?

We’re not talking about parallel systems where some website content and features are in one system, and some
are in another, and they inhabit slightly different parts of the same domain. To regular users, that might look OK,
but it’s a cumbersome option in terms of themeing (you need to manage the appearance of two systems instead of
one) and in terms of interactive features (you quickly run into single sign-on issues.)It would be better if somehow
you could simply get the features you want from one CMS inside the other. But how can this be done?

We will take the example of integrating Drupal and Formulize to show how such an arrangement is possible.

UPCOMING TRAINING COURSES

Developing on Drupal
starts August 10, 2015

Web Security
starts August 17, 2015

Developing on WordPress
starts August 24, 2015

Advanced PHP Development
starts August 28, 2015

www.phparch.com/training

Get up and running fast with
PHP, WordPress,

Web Security & Drupal!

4 | August 2015 www.phparch.com

phparch.com
http://phparch.com/training?utm_source=mag0815&utm_medium=pdf&utm_campaign=training
phparch.com

 www.phparch.com August 2015 | 5

How Many CMSs Can You Fit Inside a Website?

It’s Just an Extension of HTML
Let’s step back and remember that PHP is just an enhancement to answering an HTTP request. Drupal does not

answer the HTTP request; the web server does. The web server then searches for the file that was requested, and
if the file is PHP, then the instructions in that file are processed, and the web server continues from there until all
the included files and code have been processed. The web server then returns a stream of HTML to the client
based on all the instructions just read.

There’s no reason in principle that you can’t have as much PHP code as you would like answer the page request.
With little effort, a single request can result in both CMSs starting up and generating content for the HTML stream.
All CMSs have a relatively simple process that bootstraps their template system, their connection to their database,
their internal API, and so on.

In WordPress, you include wp-load.php, as seen in the wp-blog-header.php file:

if (!isset($wp_did_header)) {
 $wp_did_header = true;
 require_once(dirname(__FILE__) . '/wp-load.php');
 wp();
 require_once(ABSPATH . WPINC . '/template-loader.php');
}

In Drupal, you call bootstrap.inc, as seen in the index.php file:

define('DRUPAL_ROOT', getcwd());
require_once DRUPAL_ROOT . '/includes/bootstrap.inc';
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);
menu_execute_active_handler();

In Formulize, you call mainfile.php from
any page (Formulize, like ImpressCMS
and XOOPS, which it derives from, uses
a page controller architecture, so every
page needs to bootstrap the system first
before starting its own logic), for example
in Listing 1. XOOPS is designed to make
component interchange possible, and
this makes our task easier.

Bootstrapping Two
Systems from One
HTTP Request

The next question is how to get both systems to bootstrap as part of the same page request. To solve this, you
have to first determine which system is answering the page request. An implicit assumption here is that both
systems are installed on the same web server. There would be ways to get this to work across servers if you
allowed remote includes and tweaked some other settings.

One system needs to be primary, and the other is secondary. The http request is asking for a file from only one of
the systems. At some point during the running of that primary system, the secondary system needs to start up.

LISTING 1

01. require_once '../../mainfile.php';
02. include XOOPS_ROOT_PATH.'/header.php';
03. global $xoTheme;
04. if($xoTheme) {
05. $xoTheme->addStylesheet(
06. '/modules/formulize/templates/css/formulize.css'
07.);
08. $xoTheme->addScript(
09. '/modules/formulize/libraries/formulize.js'
10.);
11. }
12. include 'initialize.php';
13. include XOOPS_ROOT_PATH.'/footer.php';

phparch.com

6 | August 2015 www.phparch.com

How Many CMSs Can You Fit Inside a Website?

This can be accomplished by modifying the core files of the primary CMS, for example, a one line change in
Drupal’s index.php file will trigger a Formulize bootstrap as part of every request:

define('DRUPAL_ROOT', getcwd());
// BOOTSTRAP THE PRIMARY SYSTEM
require_once DRUPAL_ROOT . '/includes/bootstrap.inc';
// BOOTSTRAP THE SECONDARY SYSTEM
require_once 'path/to/Formulize/mainfile.php';
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);
menu_execute_active_handler();

That will work, but
modifying core files is rarely
recommended for reasons that
should be obvious! Sometimes,
a good shortcut is your best
friend, but not always. This also
has the drawback of invoking
the secondary system on each
request when you likely only
want it during specific pages.

A more robust solution is to
find a way to take advantage of
the primary CMS’s extension
capabilities and extend the
extension to bootstrap the
secondary CMS only when
required. For example, (Listings 2 and 3)
we have created a module for Drupal that
bootstraps Formulize when it needs to
display Formulize content inside Drupal.

The last issue to consider at this point is
whether all the objects and variables you
will rely on are actually available. Many
CMSs assume that their key objects and
variables are in the global space, and so
sprinkled throughout the rest of their code,
you see things like this:

global $user;

The code can then interact with the global $user object. The $user object is most likely created during the
bootstrap process, which is typically assumed to have taken place in the global namespace. But if you end up
bootstrapping the CMS from inside a function, then global $user won’t work any longer in all your dependent
code. If that is the case, then you need to add the global keyword before the declaration of all relevant variables.
That will ensure the variables are in the global space, even if they are created inside the scope of a function.

This is a bit of a pain, requiring an audit of the bootstrap process to identify where each of the important variables
and objects are instantiated, ensuring that they are assigned to the global namespace explicitly, and making sure
they won’t clobber one another. In more modern architectures, PHP’s namespace feature may be in use, and that
could simplify this issue quite a bit.

LISTING 2

01. // LISTEN FOR MODULE INITIALIZATION BY DRUPAL
02. function formulize_init() {
03. //...
04. // GET PATH TO FORMULIZE, WHICH IS USER-SPECIFIED IN THE
05. // ADMIN UI
06. $formulize_path = variable_get('formulize_full_path', NULL);
07. $formulize_path = is_dir($formulize_path)
08. ? rtrim($formulize_path, '/\\')
09. : dirname($formulize_path);
10. $integration_api_path = $formulize_path
11. . DIRECTORY_SEPARATOR . 'integration_api.php';
12. //...
13. include_once($integration_api_path);
14. //...
15. }

LISTING 3

01. class Formulize {
02. ...
03. static function init() {
04. // INIT IS CALLED INTERNALLY BY ALL API METHODS
05. ...
06. // BOOTSTRAP THE SECONDARY SYSTEM
07. include_once('mainfile.php');
08. ...
09. }
10. ...
11. }

Inside INTEGRATION_API.PHP

phparch.com

 www.phparch.com August 2015 | 7

How Many CMSs Can You Fit Inside a Website?

Loose Ends
Now you have both systems bootstrapped and fully available as part of each page request in Drupal. At this point,

you probably have some other low-level challenges to overcome.

All CMS’s have some kind of security layer that validates certain things about the request and tries to prevent
things like CSRF attacks and other things you don’t want to happen. In the Formulize codebase, this includes
some older code that still checks the referrer information from the browser to verify that the request came from a
URL that is part of the same website. While this is not the most useful part of the security mechanism, it can’t hurt
(except when security software on a PC blocks referrer information)!

The problem is, the referrer check fails when Formulize bootstraps during a request initiated from a Drupal page
because it’s a different “website.” This is easily addressed by neutering the referrer check. Because it is such a low-
value part of the security process, it’s not a significant risk to turn it off:

public function checkReferer($docheck = 1) {
 return true;
 // function continues below

Any two systems that you try to tie together this way will lead to some behind-the-scenes issues like this. If they
are serious, you will need to spend a bit of time tracking them down.

Another low-level issue you need to consider is the way each system relates to the database(s). It is often possible
to have two systems share a single database if one system can use a common prefix on its tables names (to avoid
naming collisions). However, it is also possible for each system to connect to its own database on the same
database server or even to connect to its own database on a distinct database server. It all depends on how that
part of your CMS installation has been configured.

In the case of the Formulize
codebase, the legacy
mysql_connect function
can be used to establish the
database connection as well
as the newer PDO library.
Which gets used depends
on the settings chosen at
the time of installation. If the
mysql_connect function
is used, and the Formulize
database is on the same
server as the primary system’s
database, it is possible that the
primary system’s connection to
its database will be replaced
by the connection to the
Formulize database. Fortunately, this is rare due to the prevalence of PDO now, and it has a simple solution in any
case (see Listing 4).

Session Integration
The most critical low-level issue is session integration, or single sign on. To provide your users with any

significantly useful behavior in your cojoined set of CMSs, the secondary system needs to be aware of which user
is logged in in the primary system.

Most CMSs have a table of users in their database. Each user has a primary key in that table, a user ID, which
is referenced elsewhere in other tables. An extremely simple approach to handling single sign on is to

LISTING 4

01. if (XOOPS_DB_PCONNECT == 1) {
02. // FINAL 'TRUE' FORCES A NEW CONNECTION INSTEAD OF
03. // REUSING EXISTING
04. $this->conn = mysql_pconnect(
05. XOOPS_DB_HOST, XOOPS_DB_USER, XOOPS_DB_PASS, true
06.);
07. } else {
08. // FINAL 'TRUE' FORCES A NEW CONNECTION INSTEAD OF
09. // REUSING EXISTING
10. $this->conn = mysql_connect(
11. XOOPS_DB_HOST, XOOPS_DB_USER, XOOPS_DB_PASS, true
12.);
13. }

phparch.com

8 | August 2015 www.phparch.com

How Many CMSs Can You Fit Inside a Website?

establish a pattern/rule in the real world, manually, so that when new users are created in the primary system, a
corresponding user is created in the secondary system. If you manage to do this in the same sequence in both
systems, the user IDs will be equivalent. This is not a viable solution for all cases, but we can start with it, if only to
illustrate the concept: if the IDs of the two user records are identical, then single sign on can be achieved relatively
easily.

For example, at some point in the bootstrapping process for all CMSs, the active user is determined and its
session information is loaded from the database or elsewhere. If the primary system bootstraps first, then it will
have determined which user is active, and it will have created some global object or other representation of the
active user. The secondary system can simply refer to this information to determine the active user, and if the user
IDs between the two systems are in sync, the final step would be to force the secondary system to “log in” the
appropriate user.

At that point, all you need to do during session initialization in the secondary system is add something like this:

// ADDITIONAL CODE TO IDENTIFY THE ACTIVE USER
global $user;
if ($user) {
 $_SESSION['activeUser'] = $user->uid;
}

// CONTINUE WITH NORMAL SESSION INITIALIZATION
if ($_SESSION['activeUser']) {

A more robust solution is to create a translation table that records which user ID in the
secondary system corresponds to
which user ID in the primary system.
This is relatively simple in any CMS
that has any type of “event” system
that triggers events when users are
created, updated, or deleted.

The Formulize module in Drupal
maintains this translation table by
responding to the Drupal “hook”
system (which is an API convention
for responding to various standard
events in Drupal).

In Drupal, when a new user is
created in Listing 5.

LISTING 5

01. function formulize_user_insert($edit, $account, $category) {
02. if (!_formulize_integration_init()) {
03. return;
04. }
05.
06. $user_data = array(
07. 'uid' => $account->uid,
08. 'uname' => $account->name,
09. 'login_name' => $account->name,
10. 'name' => $account->name,
11. 'pass' => $account->pass,
12. 'email' => $account->mail,
13. 'timezone_offset' => $account->timezone/60/60,
14. 'language' => _formulize_convert_language(
15. $account->language
16.),
17. 'user_avatar' => 'blank.gif',
18. 'theme' => 'impresstheme',
19. 'level' => 1
20.);
21.
22. $user = new FormulizeUser($user_data);
23. Formulize::createUser($user);
24.
25. // Add user to groups
26. foreach ($account->roles as $roleid => $rolename) {
27. Formulize::addUserToGroup($account->uid, $roleid);
28. }
29. }

phparch.com

 www.phparch.com August 2015 | 9

How Many CMSs Can You Fit Inside a Website?

In the Formulize integration API
(Listing 6).

LISTING 6

01. static function createUser($user_data) {
02. self::init();
03. if($user_data->get('uid') == -1) {
04. throw new Exception('Formulize::createUser() - '
05. .'The supplied user doesn\'t have an ID.');
06. }
07.
08. //Create a user from the provided data
09. $member_handler = xoops_gethandler('member');
10. $newUser = $member_handler->createUser();
11. $newUser->setVar('uname', $user_data->get('uname'));
12. $newUser->setVar(
13. 'login_name', $user_data->get('login_name')
14.);
15. $newUser->setVar('email', $user_data->get('email'));
16. $newUser->setVar(
17. 'timezone_offset', $user_data->get('timezone_offset')
18.);
19. $newUser->setVar(
20. 'notify_method', $user_data->get('notify_method')
21.); //email
22. $newUser->setVar(
23. 'level', $user_data->get('level')
24.); //active, can login
25.
26. if ($member_handler->insertUser($newUser, true)) {
27. //Map the created user to the external ID provided
28. $user_id = $newUser->getVar('uid');
29. $return = self::createResourceMapping(
30. self::USER_RESOURCE,
31. $user_data->get('uid'),
32. $user_id
33.);
34. if ($return > 0) {
35. /* 2 is registered users group */
36. $member_handler->addUserToGroup(2, $user_id);
37. }
38. return $return;
39. }
40. }

Once that is done, you can refer to the translation table to identify which “secondary” user corresponds to which
“primary” user. In Formulize, there is a method in the API called getXoopsResourceID that looks up the “external”
ID and returns the ID of the corresponding resource in the local system.

During the module initialization in Drupal:

global $user, $formulizeHostSystemUserId;
$formulizeHostSystemUserId = $user->uid;

phparch.com

10 | August 2015 www.phparch.com

How Many CMSs Can You Fit Inside a Website?

LISTING 7

01. if (isset($GLOBALS['formulizeHostSystemUserId'])) {
02.
03. if ($GLOBALS['formulizeHostSystemUserId']) {
04. $externalUid = $GLOBALS['formulizeHostSystemUserId'];
05. } else {
06. $externalUid = 0;
07. $cookie_time = time() - 10000;
08. $instance->update_cookie(session_id(), $cookie_time);
09. $instance->destroy(session_id());
10. unset($_SESSION['xoopsUserId']);
11. }
12.
13. }
14.
15. if ($externalUid) {
16.
17. $xoops_userid = Formulize::getXoopsResourceID(
18. Formulize::USER_RESOURCE, $externalUid
19.);
20. $icms_user = icms::handler('icms_member')
21. ->getUser($xoops_userid);
22. if (is_object($icms_user)) {
23. // set a few things in $_SESSION, similar to what
24. // include/checklogin.php does, and make a cookie
25. // and a database entry
26. $_SESSION['xoopsUserId'] = $icms_user->getVar('uid');
27. $_SESSION['xoopsUserGroups']
28. = $icms_user->getGroups();
29. $_SESSION['xoopsUserLastLogin']
30. = $icms_user->getVar('last_login');
31. $_SESSION['xoopsUserLanguage']
32. = $icms_user->language();
33. $_SESSION['icms_fprint']
34. = $instance->createFingerprint();
35. $xoops_user_theme = $icms_user->getVar('theme');
36.
37. if (in_array($xoops_user_theme,
38. $icmsConfig['theme_set_allowed'])
39.) {
40. $_SESSION['xoopsUserTheme'] = $xoops_user_theme;
41. }
42. $instance->write(session_id(), session_encode());
43.
44. // need to use the current maxlifetime setting, which
45. // will be coming from Drupal, so the timing of the
46. // sessions is synced.
47. $icms_expiry = ini_get("session.gc_maxlifetime") / 60;
48. $cookie_time = time() + (60 * $icms_expiry);
49. $instance->update_cookie(session_id(), $cookie_time);
50. }
51. }

During the session initialization in
Formulize (Listing 7).

It’s the Content,
Stupid

With all this administrative work out
of the way, you now have two fully
integrated CMSs, with single sign on,
capable of contributing together to an
http request! Just one question: how
do you actually integrate the content?

We need a straightforward way to
merge content from the secondary
system with the page that is being
generated in the primary system.

The first thing to keep in mind is the
concept that one system is primary,
and the other is secondary. All CMSs
have some kind of templating system,
some way that the various parts of the
page that have been generated during
the request, are merged into a single
stream of HTML that gets sent to the
client. The question for us to consider
at this point is which part of the page is
the part where we want our secondary
system’s content to appear.

phparch.com

 www.phparch.com August 2015 | 11

How Many CMSs Can You Fit Inside a Website?

Typically, this would be the body section of the
page. Most CMSs provide some way to invoke
PHP commands in the body section of the page.
Or you can use the extension capabilities of the
CMS to create some new type of body content.
For example, with the right settings turned on
in Drupal, you can type PHP commands directly
into the body section of a page (Figure 1).

This is an extremely useful trick as long as
your secondary CMS has a convenient API for
generating/getting the content of its various
pages and components. You can simply use
PHP commands to essentially embed the
content from the secondary CMS inside the
primary CMS. In the case of Formulize, each
screen that a user can interact with can be easily
invoked by a few lines of PHP (Figure 2).

Those lines generate the entire body section
of the page (Figure 3).

FIGURE 1PHP code going into a Drupal page

FIGURE 3The rendered page in Drupal (content from Formulize highlighted in red)

FIGURE 2
A Drupal page with PHP code for invoking

Formulize content.

phparch.com

12 | August 2015 www.phparch.com

How Many CMSs Can You Fit Inside a Website?

This same behavior is typically easy
to achieve using your CMS’s extension
capabilities. For example, in Drupal,
the same module we use to bootstrap
Formulize and synchronize the users
can also generate the screen contents
and make them available to the Drupal
templating system:

Integrating the systems through the
module means webmasters can use
the admin UI to add content from one
system to the other rather than having
to type in PHP code.

Links of Doom
There is one big challenge that arises

at this point: the generation of links
inside the content from the secondary
CMS.

CMSs are generally architected
based on the assumption that they are the single thing
responsible for answering the http request. They
often set up some constants or variables during the
bootstrap process to represent the canonical root path
to the installed CMS software on the server along with
the canonical URL at which users can reach the site.

Those constants are reused again and again when the
CMS generates the page contents. This is similar to
how many frameworks operate as well.

A typical link in a CMS would be generated by code
such as this:

$link = $base_url . "/profile/?user=" .
		 intval($user_id);

The problem comes when such a link from the
secondary CMS is embedded inside the primary
CMS’s page, when the user clicks on the link and is
then taken to a page governed by the secondary CMS.
At that point, all your careful work integrating the two
systems is broken, as the new page request is not
being answered by the primary system.

This problem does not arise for images and Javascript
files and other dependent resources. They can be
loaded without issue from their native locations inside
the file structure of the secondary CMS. An issue only
arises when the user activates a link that is based on
the base URL of the secondary CMS and essentially

“breaks out” of the primary CMS at that moment.

There are three possible solutions to this problem.

First, this issue highlights a conceptual shortcoming
of the standard model of setting up a constant for
the root path to the files and a constant for the base
URL. Essentially, a third constant might help in some
cases, something you could call the “deployment
URL” to represent the address on the web where the
secondary system’s content will be deployed, distinct
from the address where the secondary system is
installed.

The secondary system’s code could then be modified
in certain places to generate links based on the

“deployment URL” instead of its own base URL. In
addition, you would need to take into account the
addressing and aliasing scheme in the primary CMS.
After all, in the example above, /profile/?user=27
will not lead to a valid page in the primary CMS.
Therefore, the secondary CMS would need to be
altered in a way that caused it to generate URLs that
pointed to valid pages inside the primary CMS.

Second, you could alter the secondary CMS
so that it used the templating system from the
primary CMS. That way, when people landed on
the /profile/?user=27 page, the secondary CMS
would answer the request, but the contents would
be presented inside the standard page template that
the primary CMS is using. This is the most foolproof
approach, as it would theoretically work for any
address inside the secondary CMS.

LISTING 8

01. function formulize_view($node, $view_mode) {
02. if (_formulize_integration_init()) {
03. drupal_add_css(
04. drupal_get_path('module', 'formulize')
05. . '/formulize.css'
06.);
07. Formulize::init();
08. drupal_add_js(XOOPS_URL
09. . '/modules/formulize/libraries/formulize.js');
10.
11. // start capturing output from Formulize screens
12. ob_start();
13. Formulize::renderScreen($node->screen_id);
14. $output = ob_get_clean();
15. $node->content['formulize_screen'] = array(
16. '#markup' => $output,
17. '#weight' => 1
18.);
19. }
20. return $node;
21. }

phparch.com

 www.phparch.com August 2015 | 13

How Many CMSs Can You Fit Inside a Website?

Some combination of the first and second approaches could likely address most situations. However, there is a
third option. This is what we have used when integrating Formulize with other systems, and it allows Formulize to
work no matter what other system it is installed with.

Reuse the Current URL
Formulize doesn’t use a base URL concept at all. Instead, it detects the current URL being used for the active http

request. It then uses that URL as the destination of all links and the action URL for all forms and so on, regardless of
whether that URL is part of the primary or secondary system.

Formulize therefore keeps requesting the same page from the server over and over. All “state” information about
what a user has clicked on or what settings users have altered is posted with the request, so we can then see in
$_POST exactly what the user has done and respond accordingly. For example, Figure 4 shows the URL and page
after an initial page load:

Figure 5 shows the page after a reload, after a search term has been submitted.

FIGURE 4The initial page after the screen has loaded

FIGURE 5After a search term has been submitted, note the URL

phparch.com

14 | August 2015 www.phparch.com

How Many CMSs Can You Fit Inside a Website?

Formulize was originally designed this way so that Formulize content could be rendered equally well in the body
section of the page or inside a block on another page at a different location in the same CMS. This architectural
approach turned out to be perfect for deploying Formulize content inside any other CMS as well.

So What?
With a few conceptually simple steps, it is possible to integrate two (or more) CMSs so they can collaborate

in delivering content for a website. The major challenge lies not in tying the two together but occurs when
deploying content from one to the other. Architectural assumptions underlying how the systems are built can
make this easy or hard. If you can overcome that barrier for your given use case, then you can break out of a CMS’s
walled garden and reap the benefits of a module or feature from a secondary CMS that is not available in your
primary CMS.

This can give your employer or client much greater flexibility in terms of what systems they use and how. It can
also avoid the need to migrate 100% of content and features from one system to another when a decision has
been made to move from an old CMS to a new one.

Twitter: @jegelstaff

JULIAN EGELSTAFF has been working in the software and IT industries for over 18
years, and has been building and using content management systems for
most of that time (since PHP 3). In 2003, he co-founded Freeform Solutions,
a not-for-profit organization with a mission to help other not-for-profits use
technology more effectively. Today, Freeform helps dozens of organizations
around the world, specializing in Drupal and CiviCRM.

Julian is also the lead developer of Formulize, an open source project
designed to bring the easy deployment and configuration of CMSs, to the
world of databases. Formulize lets people quickly create complex data
management, reporting and workflow systems in the same way CMSs let you
quickly configure complex websites. Freeform uses Formulize to extend the
capabilities of Drupal and other systems, when client needs cross over from
content to data.

Julian speaks regularly at technology events and conferences, on a variety of
topics ranging from technical aspects of website development, to general
privacy and security issues online. He holds a Bachelor of Journalism and
Philosophy, and is a Zend Certified Engineer.

14 | August 2015 www.phparch.com

phparch.com
http://twitter.com/jegelstaff
phparch.com

http://daycamp4developers.com

magazine

books

conferences

training

phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2015-6,August

