
FREE Article!

2 | October 2015 www.phparch.com

FEATURE

DisplayInfo()

Requirements
•	 PHP: 5.3+

Other Software
•	 MySQL 5.0+
•	 Apache 2

Related URLS
•	 PHP Manual—https://php.net/manual/
•	 MySQL—http://www.mysql.com
•	 PHP History—https://php.net/history.php
•	 Scripting: higher level programming for the 21st Century—http://phpa.me/ieee-scripting-21st
•	 Static Typing Where Possible, Dynamic Typing When Needed: The End of the Cold War Between

Programming Languages—http://phpa.me/lopes-types-pdf
•	 Floating point numbers—https://php.net/language.types.float
•	 PHP type comparison tables—https://php.net/types.comparisons
•	 PHP RFC: Scalar Type Declarations—https://wiki.php.net/rfc/scalar_type_hints_v5

As a dynamically typed language, working with data types in PHP
can sometimes seem like a dark art. This article will discuss some of
the trade-offs inherent to PHP and delve into some of the strangest
behaviors my team has debugged while developing a high-volume
PHP application.

Casting Tales in PHP
Zachary Drillings

Introduction
One of the core language features of PHP is dynamic

typing. In a statically typed language, a developer
must manually cast a variable between cases, as in
these examples from Java:

//Casting an Integer to a Float
int x = 1;
float y = (float) x;
//Casting a String to an Integer
String s = "10";
int z = int foo = Integer.parseInt(s);

Theoretically, dynamic typing provides for more
concise code and increased ease of use as the
interpreter picks up the slack, assigning and
reassigning types as indicated by the programmer. In
most cases, this system works entirely as expected;
however, when it does not, it can lead to bizarre
situations.

PHP was originally intended to process HTML forms
on the Internet. Although this has branched out
over the years, it continues to be one of the most
common-use cases. An extension of this, and a very
popular subset of use cases in its own right, is to
use PHP to power a RESTful API. Using HTTP as the
communication mechanism, RESTful APIs are designed

phparch.com
https://php.net/manual/
http://www.mysql.com
https://php.net/history.php
http://phpa.me/ieee-scripting-21st
http://phpa.me/lopes-types-pdf
https://php.net/language.types.float
https://php.net/types.comparisons
https://wiki.php.net/rfc/scalar_type_hints_v5

3 | October 2015 www.phparch.com

Casting Tales in PHP

to take user input just like web forms; very often
they are also designed to persist this to some sort of
datastore on the back end. This back-end datastore is
traditionally a relational database management system
(RDBMS), and typically RDBMSs are strictly typed.

In the course of developing a RESTful API in PHP with
MySQL (in this case, our chosen back-end RDBMS),
we have come across many interesting use cases and
unexpected behaviors. The combination of arbitrary
user input, dynamically typed PHP, and a RDBMS has
provided many hours of intense debugging and has
required exceptional care to sanitize and validate
input.

To set the stage for this typing adventure, this article
will go through some background on typing, why
my team uses PHP, and some of the most interesting
bugs that we have encountered. Finally, there will be
a discussion of some conclusions that can be drawn,
and a discussion of strategies for going forward.

Dynamic Versus Static Typing
There is continual debate in computer science and

software development over the benefits and deficits
to using statically or dynamically typed languages.
Of course, each has its own place with positives and
negatives. In the end, the debate comes down to
personal preference and use case.

Static Typing
Statically typed languages, such as C or Java, require

all variables to be initialized with a typed value; a
compile-time error will result if an attempt is made to
assign a value of the wrong type, or, more significantly,
to pass a variable of one type into a function expecting
another. Four strong benefits of this, as described in
Erik Meijer and Peter Drayton’s paper Static Typing
Where Possible, Dynamic Typing When Needed: The
End of the Cold War Between Programming Languages
(see Related URLs), are:

1.	 It makes it somewhat harder to make certain
errors, in which the developer misuses variables.
This can prevent long debugging sessions from
occurring late in application development and
ultimately save time.

2.	 Another aspect of improving the development
experience is clearer self-documentation,
achieved by providing more information in
function/method declarations. Instead of relying
on the previous developer to make the type-of-
input parameters clear, it is a required portion of
the signature.

3.	 Static typing also provides ways to improve the
program’s run speed. It does this in two ways:
•	 It allows the compiler to make optimizations

that are not otherwise possible. For instance,
if the type signature is not known, the
compiler is unable to use a direct method
call. Although virtual method calls do not
require an exceptional amount of extra time,
this additional overhead can add up.

•	 It reduces type-determination baggage.
Since assigning new values to variables
does not require runtime determination
of variable type, this extra overhead is not
introduced. This aspect also shrinks the
program size, since none of this extra type
baggage is required. (An example of this
extra information is PHP’s Zval.)

4.	 No runtime type exceptions will occur. This is
related to the first point in regard to catching
errors earlier, but is important in its own right.

Dynamic Typing
On the other hand, dynamic typing is generally

intended to be faster and more expressive, and lines
up better with a mental image of program structure.
In addition to PHP, other major dynamically typed
languages include JavaScript, Python, and Ruby.
Benefits, described in John Ousterhout’s paper
Scripting: Higher Level Programming for the 21st
Century (see Related URLs), include:

1.	 Faster development by not requiring the
additional typing out of data types.

2.	 No restrictions on how a variable may be used
allow the developer to build in hacks and use
cases that would not be possible with static
typing. This is especially beneficial during the
rapid prototyping phase of a project when ideas
(and types along with them) may change often
and results are paramount.

3.	 Because of the lack of type declarations, code is
more concise. With proper naming conventions
it should still be abundantly clear what a variable
is intended to be, and the programmer can more
easily see all business logic.

4.	 Dynamic typing allows for easier function
overloading—particularly overloading that is
far less verbose. The programmer is able to use
one function, possibly calling a single function
containing the actual business logic; as opposed
to using several different functions, each with
their own signature.
•	 This is even more true in PHP, specifically,

which allows for parameters with default
values.

phparch.com

4 | October 2015 www.phparch.com

Casting Tales in PHP

Relative Merits
The one area in which statically typed languages are

generally able to declare a true victory is execution
speed. Because of the diminished code baggage and
possible optimizations, the win is clear. There are few
arenas in modern application design in which these
small gains are truly going to affect the end user, but
if you plan to make micro-optimizations on this level,
then your choice is likely set.

The argument is typically made that it is faster to
write code in a dynamically typed language. However,
due to the added testing time and potential issues in
production, this is certainly not always the case. For
quick prototyping, a dynamic language definitely
shows benefits; however, for writing a full system, the
trade-offs are less clear.

Aside from the realm of ultra-high-speed applications,
programmer preference takes a much larger role. Do
you prefer to write excellent tests (a must anyhow) and
risk debugging strange runtime errors, or prefer to
deal with a larger variety of compile-time errors? Is it
preferable to have concise and clear code, or superior
self-documentation?

How We Wound Up Here
As an organization we believe it is extremely

important to work with clients and provide for
the greatest ease of use possible. To this end, we
prioritized two things:

1.	 A RESTful API as a first-class citizen of the
ecosystem.

2.	 Great ease of use for customers, especially not
throwing errors if their intent is clear. (PHP allows
working with integers as
strings; why shouldn’t we?)

With many great libraries, a highly
active community, and its specialty
in processing forms, PHP was an
ideal choice for the need. MySQL
is similarly well adapted and the
PHP/MySQL working relationship
is well designed, well documented,
and well understood. Add to these
the interest in rapid development
and prototyping, and the benefits
of this system design are clear.
Unfortunately, as we have grown
and the system has become
increasingly complex, we have run
into some issues.

We Live in a Stringy World
As discussed earlier, PHP was originally designed to

process web form input. In our API this is JSON input,
but that’s not entirely relevant. What is more important
is that this input arrives from the POST input stream as
a string (file_get_contents("php://input"))!
As we continue to dive through casting in PHP, it is
imperative to realize that we must cast in order to
arrive with data in any sort of usable format. PHP’s
dynamic typing makes the manipulation smoother
than it might otherwise be (one more reason to use it),
but without use of casts we simply could never work
with our user input.

Why User Input + PHP +
MySQL is a Dangerous
Combination

Working toward the goal of being flexible for our
clients, we have traditionally made our best attempt
to cast before rejecting an input, as opposed to
being fundamentalist about checking input types. For
instance, if a user passed in an id value as a string, but
we expected it to be an integer ("id":"19" instead of
"id":19), we would still like to accept this. Our code,

then, wound up looking somewhat like Listing 1.

You may be looking at the line
if ($field != $jsonIn->id) and questioning the
validity of using only the double equals comparison
operator as opposed to the triple equals operator,
which additionally compares for type. With the cast
to an integer that has already been performed, using
triple equals would allow us to catch only the situation
in which our user input an integer. If this were our
intention, then we would only

LISTING 1

// Extract POST body
$input = file_get_contents("php://input");
$jsonIn = json_decode($input);
if (!$jsonIn) {
 throw new Exception("Bad Input - Not Json");
}

// Assuming we wish to accept an integer field
$field = (int) $jsonIn->id;
if ($field != $jsonIn->id) {
 throw new Exception("Bad Input - Not an int");
}
// Validate $field in any other ways
$adodb_mysqli->execute(
 "Insert into example ('id') VALUES ({$jsonIn->id})"
);

phparch.com

5 | October 2015 www.phparch.com

Casting Tales in PHP

need to check the input with is_int($jsonIn->id). However, in order to allow greater flexibility, as previously
stated, we wish for '12' == 12 to be accepted in order to better accommodate the stringy nature of input.

Some Specific Issues We Have Seen
We have referred to the potential for strange, unexpected, and possibly dangerous behaviors related to casting

in PHP. To drive these issues home, though, we will dive into some specific examples in this section: first, one of
the more complex bugs we had to debug related to taking scientific notation as input; second, a recurring issue I
have seen in many applications with evaluating strings as boolean values; and third, an additional gotcha to watch
for.

Scientific Notation

Let’s assume that we have a system which is expecting to take an integer as input and eventually pass this integer
down into a database table. Perhaps this is an id acting as a foreign key from some other table. Although we may
expect a user to pass in an integer (and they may in 99% of cases), what happens if they do something strange,
such as pass in scientific notation?

Consider the following code example:

$scientificNotationVariable ='5e2';
$varPlusZero = $scientificNotationVariable + 0;
$castedVar = (int) $scientificNotationVariable;

echo $varPlusZero . "\n";
echo $castedVar . "\n";

You might expect that our output would be the same on both lines. Our initial variable is clearly just “500”,
expressed in scientific notation. However, this is the Output Panel 1.

Experienced PHP developers will immediately realize that this occurs when doing arithmetic because our string
is cast to a float and not to an integer. Floats, in PHP, can be expressed properly in scientific notation, as described
in the PHP manual’s Floating Point Numbers section (see Related URLs). However, when not doing arithmetic, the
casting mechanism does not cast to a float before converting to an integer. Instead, all characters are grabbed
for casting until the first non-numerical character is reached. In this case, e is the first non-numerical character, so
we’re left with only 5.

If our intention is to use this—or another similar piece of code—as a validation (say to confirm that our user input
is in the correct format, or to verify that the id exists in our database), we can very easily shoot
ourselves in the foot and ruin data integrity! The value 5 certainly looks like valid input, but it is
not what our user expects! It
may even present a security
hole.

But wait—this gets scarier!
What happens if you try
to push data into your
datastore? Let’s take the
MySQL in Output Panel 2.

Now, of course, if we
had been vigilant about
inserting our casted data,
then we simply wind up with
data integrity issues and
angry users (we would be

mysql > desc example;
+-------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------------+------+-----+---------+-------+
| id | int(10) unsigned | NO | | NULL | |
+-------+------------------+------+-----+---------+-------+
mysql > insert into example (`id`) VALUES (5e2);
mysql > insert into example (`id`) VALUES ('5e2');
mysql > select * from example;
+-----+
| id |
+-----+
| 500 |
| 500 |
+-----+

500
5

OUTPUT 1

OUTPUT 2

phparch.com

6 | October 2015 www.phparch.com

Casting Tales in PHP

inserting 5). As we can see from the example above, though, if we perform validations on our casted data, and
then (confident that it is correct) insert original data, we expose ourselves to a complex vulnerability—validating
against 5, but inserting 500!

If, instead of arbitrary ids, these values represent cash amounts that a user may transfer, we may be relaxing
confident that we allowed our user to request $5 when we have really given them the much larger sum of $500!

Strings to Booleans
In a similar vein to our previous discussion on casting to an integer, it is very common to expect a boolean value

and intend to insert this into our database. Unfortunately, once again we find ourselves trying to support our
clients and shooting ourselves in the foot as a result. In MySQL, booleans can be represented as tinyint(1). This
makes a lot of sense from a storage perspective, but what is the best way to solicit client input when you intend to
store your value as 1 or 0?

Theoretically, you could imagine a user expecting to be able to input 1 or true in the best case, but what about
the string "true"? In much the same way as we accepted our id as a string above, it is clear what the user’s
intention is here. Unfortunately, PHP behaves in an odd way in this respect as well.

Let’s take a look at a few possible inputs and how they are interpreted:

if (1) echo "true"; 		 // true
if (14) echo "true"; 	 // true
if ('true') echo "true"; 	 // true
if ('hello') echo "true";	 // true
if ('false') echo "true";	 // true
if (true) echo "true"; 	 // true
if (false) echo "true"; 	 // false, no output
if (0) echo "true"; 	 // false, no output
if ('0') echo "true"; 		 // false, no output

Several of these make a lot of sense—but things
start to go off the rails when we try to check
14 or "hello". Essentially, anything that is not
empty is going to get evaluated to true. Our
validations work well for false values, since there
is only a small set of possible empty values (note:
things get odd again if you try to check on null).
However, aside from this limited set of empty
values, anything and everything will evaluate to
true. And to make matters worse the following is
also true!

if ((bool) "hello" == true)

Although likely not as terrifying as our previous
example, the ease with which we wind up
storing data differently than our user expects is
disconcerting. (We are unable to predict what
any client would intend when passing "hello"
in for a boolean.) The PHP manual possesses a
complete list under PHP type comparison tables
(see Related URLs).

The major difference in this situation from the
prior example is that here, MySQL at least acts
as our safety net, since attempting to insert

phparch.com
http://blackfire.io

7 | October 2015 www.phparch.com

Casting Tales in PHP

anything aside from a one byte integer into a tinyint column results in an error. In the scientific notation example,
inserting the cast value into MySQL resulted in data inconsistent with user expectation, but was the safer of our
alternatives. Here, inserting the uncast value saves us an error, but inserting the cast value would leave us with
inconsistent data!

One More Gotcha—PHP is Very Active
PHP is also, as it turns out, very active from line to line with its casting. Although in many languages, a type hint is

considered a powerful declaration from the programmer, PHP has no such respect.

Let us take another short code snippet, building off an earlier example:

$var = "5e4";
$var = (int) $var;
$var = $var + .2;
echo $var . "\n";

What would you desire this to output? What would you expect it to output? 5.2 is the output, of course. The
interpreter accepts that we wish to cast our initial value to an integer, but this has no bearing going forward. On
the very next line, it is glad to juggle $var into a float!

This is probably a bit less frightening than our previous two examples, but it’s yet another important message to
the PHP developer that you must remain ever vigilant when dealing with casting.

Conclusions
Here we have discovered some interesting dangers in how the PHP interpreter handles type casting. Although

these are all easy enough to mitigate in theory, it demonstrates how easy it is to find yourself in a strange situation
when you put too much trust in your tools and fail to validate your inputs completely. The biggest challenge in
application development is typically integration, since connecting users through PHP to MySQL exposes the
biggest concerns.

So What Can We Do?
One of our key lessons learned has been that being flexible and doing our best to format input is not advisable.

Although we believe strongly in what we were trying to achieve, we jeopardized data integrity (at least in certain
edge cases) by making our best attempts.

Our takeaway here is that we must engage with our users as partners. Instead of working as hard as we had to
intuit their intentions and accept input whenever we can, it is much safer to be vigilant with the types of our input.
We are better served by spending our efforts in writing effective error messages and documentation so that it is
clear why our application is behaving as it does, rather than spending that same time attempting to guess what
our users mean.

A small change that we made was to alter our input logic to become:

//Assuming we wish to accept an integer field
$field = (int) $jsonIn->id;
if ($field !== $jsonIn->id) {
 throw new Exception("Bad Input - Not an int");
}
//Validate $field in any other ways

You will notice the change from != to !==. Although we previously discussed our very clear intention to use the
double equals comparison logic, a new focus on engaging with our users as partners and choosing to be vigilant
about data types mandates that we now reject client input of the wrong type.

phparch.com

8 | October 2015 www.phparch.com

Casting Tales in PHP

Onwards to PHP 7
In the upcoming PHP 7, a powerful new tool for working with types has been implemented—scalar type hinting.

The developer will now be able to declare scalar types (int, float, string, and bool) for function parameters
and return values, and optionally choose whether violations of these type declarations will result in an error or an
implicit cast. In the below example, we have declared strict_types=1, meaning that a fatal error will result if
a value that is not an integer is passed in as a parameter (or returned, though this is not possible in this example).
Listing 2 shows the syntax for using strict type hinting.

If, alternately, strict_types=0 were declared, then an
implicit cast of the input parameter to an integer would
result. A complete RFC of the implemented system can
be found under PHP RFC: Scalar Type Declarations (see
Related URLs). Although there is some debate about
whether these changes bring PHP too much towards a
statically typed language, they definitely enable greater
flexibility for developers. The largest value of these
changes will likely be seen when integrating with other
developers’ interfaces and libraries, but it will surely
have benefits for use cases involving input validation (as
we have discussed).

In the end, working with any language and any system
requires extensive knowledge of how best to work with
the tools. The casting implementations within PHP that enable its powerful and dynamic typing engine have
particular gotchas to watch out for. By being aware of them, and through exhaustive testing, it is possible to write
great, stable applications, without slowing down.

Twitter: @zdrills

ZACH is an experienced Web Application Developer with a passion for
architecting scalable RESTful APIs. He enjoys exploring the full-stack, from
following advancements in transistor technology and writing toy assembler
programs to discussing developments in JavaScript libraries. Zach has spent the
last 3 years at AppNexus, Inc helping to scale a PHP-based API from 12,000 to
128,000 users. He is currently an Engineering Manager, where he leads a team
of ten extremely talented full stack engineers to solve interesting advertising
technology challenges by developing well-tested, secure applications.

 www.phparch.com October 2015 | 8

LISTING 2

<?php
declare(strict_types=1);

function adder(int $a, int $b): int {
 return $a + $b;
}

class Adder {
 function add(int $a, int $b): int {
 return $a + $b;
 }
}

phparch.com
http://twitter.com/zdrills
phparch.com

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2015-2,october

