
FREE Article!

2 | October 2015 www.phparch.com

FEATURE

Traditionally, we have two extensions, php-
mysql and php-mysqli, which both expose C level
functions as PHP functions from libmysql. If you
look at the libmysql source code, the mysql_*
functions are almost all exported into the same
PHP functions on php-mysql, and this was the
first and has been the default MySQL extension
before PHP 5. The php-mysqli extension came with
the release of PHP 5. The new extension had full
support of newer features from MySQL 4.1.3 and
support for OOP-style implementation.

Along the same lines, we have PDO_MYSQL
for MySQL-backed PHP Data Objects. In this
case, PDO is the PHP extension that allows an

MySQL has been the long-standing de facto
backend data store for PHP applications,
and I imagine it will be for a very long time.
Traditionally, connecting from PHP to MySQL
has been very stable and available out of
the box on many platforms. New and legacy
applications enjoy this stability; in many cases,
this is the main reason many teams do not
require bleeding-edge or at least recent stable
release upgrades of their stack. However,
there are a number of compelling reasons why
applications would need an upgrade—in this
case switching our php-mysql/php-mysqli
connector from libmysql to mysqlnd.

Switch to MySQLnd Already!
Jervin Real

FEATURE

phparch.com

 www.phparch.com October 2015 | 3

DisplayInfo()

DisplayInfo()

Requirements:
•	 MySQL Native Driver—http://php.net/book.mysqlnd

Related URLs:
•	mysql_ removed in PHP 7—

http://phpa.me/ref-deprecated-php7
•	 Mysql 4.1 features—http://downloads.mysql.com/docs/refman-4.1-en.a4.pdf
•	 PHP 5 Usage—http://phpa.me/php-usage-nov2015
•	 mysqlnd_ms—http://php.net/book.mysqlnd-ms
•	 Simple MySQL Master HA with mysqlnd_ms—

https://www.percona.com/blog/?p=24407
•	 High Availability with mysqlnd_ms on Percona XtraDB Cluster

https://www.percona.com/blog/?p=24413
•	 mysqlnd_uh: Installing a proxy—

http://phpa.me/mysqlnd-proxy-quickstart
•	 mysqlnd_memcache—

http://php.net/book.mysqlnd-memcache
•	 PHP: Memory savings with mysqlnd —

http://phpa.me/oracle-mysqlnd-memory
•	 PHP mysqlnd memory optimizations: from 49MB to 2MB—

http://blog.ulf-wendel.de/?p=2989
•	 Differences between mysqlnd and libmysql—

http://phpa.me/mysqlnd-libmysql

application to use a standard API to access different
backend data stores without significant changes in
the API. PDO_MYSQL acts as an intermediate layer
between libmysql and PDO. The difference between
PDO_MYSQL and php-mysql/mysqli is that the former
does not expose any functions by itself; underneath, it
has its own set of C level functions that adheres to the
PDO interface.

As a last piece of history, php-mysql will be removed
from PHP 7 (see Related URLs). For some this may be
bad news, this is an excellent opportunity to explore
mysqlnd as well, if you are in that situation. We’ve
mentioned that php-mysqli was born out of growing
needs, and because these needs have been fulfilled

for a long time now, it only makes sense to reduce
code debt. There are many reason, but to name a few,
php-mysql:

•	 Does not support MySQL 4.1.3, at least not all its
features (see Related URLs).

•	 Code was hackish and becoming difficult to
maintain for newer systems.

•	 Has no support for prepared statements,
parameter binding, and batched statements.

•	 Does not support multiple character sets, which
is increasingly being used.

•	 MySQL 4.1.3+ has better binary protocol support
you should not ignore

•	 … and more

phparch.com
http://php.net/book.mysqlnd
http://phpa.me/ref-deprecated-php7
http://downloads.mysql.com/docs/refman-4.1-en.a4.pdf
http://phpa.me/php-usage-nov2015
http://php.net/book.mysqlnd-ms
https://www.percona.com/blog/?p=24407
https://www.percona.com/blog/?p=24413
http://phpa.me/mysqlnd-proxy-quickstart
http://php.net/book.mysqlnd-memcache
http://phpa.me/oracle-mysqlnd-memory
http://blog.ulf-wendel.de/?p=2989
http://phpa.me/mysqlnd-libmysql

4 | October 2015 www.phparch.com

Switch to MySQLnd Already!

MySQL Native Driver
MySQL Native Driver (mysqlnd) is a newer connection driver for the PHP extensions php-mysql/php-mysqli and

PDO. When we say connection driver, it means the low-level layer that handles the communications between the
MySQL server and our PHP extensions. The foremost benefit is that there are no changes on how your application
should be communicating with MySQL!

By one measuer, PHP 5.3 still accounts for a majority of the PHP-enabled sites on the planet (see Related URLs),
either because of some show-stopping code they cannot upgrade or they are stuck with systems where upgrading
wholly is not an immediate option. Whether or not your business is part of this statistic, consider switching to
mysqlnd soon.

Installation
If you are running PHP 5.4+ on most systems, such as RHEL and Debian-based systems, chances are you are

already running with mysqlnd. You can use php-cli to check if this is the case.

The command:

php -i | grep 'Client API version => mysqlnd'

should output something like:

Client API version => mysqlnd 5.0.11-dev - 20120503 -
$Id: 3c688b6bbc30d36af3ac34fdd4b7b5b787fe5555 \$

If “mysqlnd” does not show up anywhere in the output, don’t fret, it should not be that hard to install. If you are
already on 5.4+ but somehow explicitly chose not to use mysqlnd from your package manager, you can easily
replace it with similar commands like below:

Debian/Ubuntu
apt-get install php5-mysqlnd
RHEL/CentOS
yum install php-mysqlnd

Otherwise, on 5.3, you either have to compile from source or find repositories such as Remi-Collet, Atomic or
Webtatic that have packages for 5.3.

Compiling from source is not that difficult either—again, because there are no additional dependencies with
libmysql, at least, you will need to specify the following with your configure command.:

./configure --with-mysql=mysqlnd --with-mysqli=mysqlnd --with-pdo-mysql=mysqlnd

On Windows, starting from 5.3, mysqlnd is already bundled and used by default if you are using the official PHP
packages. So, all good there.

How Can MySQLnd Help Your Application?
Extend with Plugins

There are a number of plugins that come with mysqlnd developed by Oracle. They can be optimized at C level
and have direct access to the mysqlnd extension API. A number of plugins are readily for performance monitoring,
connection multiplexing, load balancing, and even allowing user-level plugins, i.e., PHP code to be executed.
These plugins require another discussion at a different time. However, this opens up other possibilities for legacy
applications; here are a few examples:

phparch.com

 www.phparch.com October 2015 | 5

Switch to MySQLnd Already!

You can scale your applications without requiring additional hardware. Traditional implementations can be done
via the PHP code or introducing another layer like HAProxy within the same application server or a dedicated one.
A good use case is implementing high availability with mysqlnd_ms via asynchronous or synchronous MySQL
replication, see Related URLs for more details.

With a plugin, you can introduce additional layers of abstraction transparently to support new features.
Sometimes, even legacy applications will be forced to support new features or functionality, however, it will
not be easy to add them by touching thousands of lines of possibly untested code. Implementing these as
hooks allows businesses to isolate implementation and testing for maximum compatibility. mysqlnd_uh,
http://php.net/book.mysqlnd-uh was created to make this possible. For example, by acting as proxy when
executing queries.

The mysqlnd_memcache plugin can translate simple SELECT queries into queries directly to InnoDB
Memcache storage. This allows for key-value store-like capabilities that may not require significant code changes.
For example, intercept INSERT and SELECT queries to persistent sessions table with with the help of
mysqlnd_uh.

There are a few more plugins initially written, however, most of them are proof of concept and testing and
experimentation is left to the reader.

Potential Performance Improvement
The connector is now closely developed as a PHP native component; this means that it is integrated well with the

core code giving PHP direct control over all structures from the wire to the view. One big improvement is no more
double buffering of the results between PHP extension and libmysqlclient.

Previously, for simple fetch results, libmysqlclient had to buffer results to its buffers, then php-mysqli again when
results are read. When using mysqlnd, there is only one in-memory copy per row kept for the result set by default,
reducing memory footprint, and allowing more PHP processes per server to execute. Additionally, depending on
how you actually handle your result sets, you can also try MYSQLI_STORE_RESULT_COPY_DATA which might help
in some situations. (Disclaimer, I tried this benchmark in the past and got similar results, but your situation may
vary.) See Related URLs for more information.

Did I mention that if you do not get immediate performance improvement, the built-in diagnostics and statistics
functions can help you achieve the same?

Improved Diagnostics
MySQLnd offers a number of client and connection statistics http://php.net/mysqlnd.stats for on-

the-fly optimization. Some of the things you can actually do with mysqli_get_client_stats() and
mysqli_get_connection_stats() include:

You can identify whether a query is slow on the MySQL server or only some of the application servers
with the no_index_used, bad_index_used, and slow_queries counters. Here is an example with a
SELECT * FROM table query, which did a full table scan.

stat client connection
no_index_used 1 2
bad_index_used 0 0
slow_queries 0 0

Identify areas where you can save memory usage from large result sets or freeable memory. The mem_* stats
are internal counters for memory allocation and deallocations under different conditions and can help detect
potential memory leaks with your code or the extension itself. The copy_on_write_* stats show how many
instances where results are referenced directly from internal mysqlnd buffers and when these buffers needed to
be duplicated because changes were made to the results. In this case, some parts of the code may benefit from

phparch.com
http://php.net/book.mysqlnd-uh
http://php.net/mysqlnd.stats

6 | October 2015 www.phparch.com

Switch to MySQLnd Already!

enabling mysqlnd.fetch_data_copy (see http://php.net/mysqlnd.config#ini.mysqlnd.fetch_data_copy).

copy_on_write_saved 0
copy_on_write_performed 0
mem_emalloc_count 884
mem_emalloc_amount 34736
mem_ecalloc_count 498
mem_ecalloc_amount 140912
mem_erealloc_count 0
mem_erealloc_amount 0
mem_efree_count 1678
mem_efree_amount 182062
mem_malloc_count 300
mem_malloc_amount 413902
mem_calloc_count 600
mem_calloc_amount 187200
mem_realloc_count 0
mem_realloc_amount 0
mem_free_count 490
mem_free_amount 7154
mem_estrndup_count 98
mem_strndup_count 104
mem_estndup_count 198
mem_strdup_count 208
proto_text_fetched_blob 512
proto_binary_fetched_blob 0
bytes_received_real_data_normal 536870912
bytes_received_real_data_ps 0

Pinpoint the source of connection errors. Previously, doing this server side required detective work. Knowing
when connect or reconnect failure happens, or when unexpected connection termination occurs, are essential.
When these statistics are non-zero, you can help isolate and easily report from the code when they occur. This is
particularly helpful when you have multiple distinct applications connecting to the same MySQL server.

connect_failure 0 0
implicit_close 0 0
disconnect_close 0 0
in_middle_of_command_close 0 0
init_command_failed_count 0 0

You can measure how effective your persistent connections are—a very high number of persistent connections
per application server might cause the MySQL server to use an unnecessary amount of memory for its per thread
buffers or max_connections, in which case you are likely better off optimizing from the server level and disabling
persistent connection. On the other hand, if your statistics show a handful of connections with high rate of reuse,
then things are going right.

connect_success 2
connect_failure 0
connection_reused 98
reconnect 0
pconnect_success 2
active_connections 2
active_persistent_connections 2
explicit_close 0
implicit_close 0
disconnect_close 0
com_ping 0
com_change_user 98

phparch.com
http://php.net/mysqlnd.config#ini.mysqlnd.fetch_data_copy

 www.phparch.com October 2015 | 7

Switch to MySQLnd Already!

With a little review, you can predict container/server
scalability. With the combined metrics on memory,
queries, and network, you can gauge whether a
server may be nearing capacity both for the MySQL
server and application server. While you may have to
create your own instrumentation, there are tools like
NewRelic’s custom metrics with its PHP agent that can
help you get started with this.

Consider a legacy application that has been held
back numerous times for upgrade or enhancements.
Allowing these applications to collect performance
and diagnostic metrics over time can help you decide
based on numbers and not solely based on executive
priorities. If not as a whole, focus on critical parts
incrementally until you are caught up with the whole
stack.

Reducing Clutter a Bit More
Because mysqlnd does not depend on libmysql

anymore, we take away the lingering dependencies
with the latter. It would’ve been easier if the PHP
source code could bundle libmysql in the same
package, but alas, this was not the case because of
different licensing models.

Now, this means that if you do not need the MySQL
client libraries installed, for example, in a container or

a virtual machine, you are reducing your application
footprint. By reducing dependency, this minimizes
friction in packaging your application development
environment to developers and testers.

Watch Out
While we’ve highlighted a number of good things

that come with the package, there are a few things to
watch out for.

Be careful with memory_limit. Because mysqlnd
now follows this setting, the usual reaction is to
increase it when you are dealing with larger result sets.
However, this may be counter-intuitive at times, as
there may be other parts of the application that would
otherwise consume the same memory you honestly
intended for MySQL results. Of course, there can also
be bugs https://bugs.php.net/bug.php?id=68544
in this space as well.

The old_password MySQL configuration is not
supported—if you have MySQL accounts in the
mysql.user table that are still using the old password
hashing format, this can break your application, since
those credentials won’t work when your application
tries to connect to the database server. I mean, come
on, how hard is it to create new MySQL accounts and
update your application’s configuration files?

phparch.com
https://bugs.php.net/bug.php?id=68544

8 | October 2015 www.phparch.com

Switch to MySQLnd Already!

If you rely on a local my.cnf for your connections, unfortunately, they do not work yet. An alternative to this is
setting your credentials via global or local php.ini (or .user.ini, .htaccess, -c option to CLI) by specifying
mysqli.default_ configuration options http://php.net/mysqli.configuration.

A few other incompatibilities are officially documented at http://php.net/mysqlnd.incompatibilities. See
Related URLs for the full comparison of mysqlnd and libmysql.

Measure as much as you can, as I’ve seen cases where large queries can slow down. For example, in this small
test, https://gist.github.com/dotmanila/ede81ea108f5dc3990ac, I get obviously less-efficient times when not
using protocol compression with mysqlnd.

LISTING 1

01. <?php
02. //mysql> show create table t \G
03. //*************************** 1. row ***************************
04. // Table: t
05. //Create Table: CREATE TABLE `t` (
06. // `t` longtext
07. //) ENGINE=InnoDB DEFAULT CHARSET=latin1
08. //1 row in set (0.00 sec)
09.
10. //mysql> insert into t (t) values (repeat('a',1048576));
11. //Query OK, 1 row affected (0.14 sec)
12.
13. //https://github.com/jacobbednarz/php-bench/blob/master/benchmark.php
14. require_once 'benchmark.php';
15.
16. function t() {
17. $mysqli = mysqli_init();
18. if (!$mysqli) {
19. echo 'mysqli_init failed';
20. exit;
21. }
22.
23. if (!$mysqli->real_connect('localhost', 'myUser',
24. 'secret', 'bench', 3306, NULL,
25. MYSQLI_CLIENT_COMPRESS)) {
26. trigger_error(
27. 'Connect Error (' . mysqli_connect_errno() . ') '
28. . mysqli_connect_error(),
29. E_USER_ERROR
30.);
31. }
32.
33. $r = $mysqli->query('select * from t');
34. while($o = $r->fetch_object()) {}
35. $r->free();
36. $mysqli->close();
37. }
38.
39. $b = new Benchmark();
40. $b->iterations = 1000;
41. $b->report('t', 't');
42. $b->bench();

phparch.com
http://php.net/mysqli.configuration
http://php.net/mysqlnd.incompatibilities
https://gist.github.com/dotmanila/ede81ea108f5dc3990ac

 www.phparch.com October 2015 | 9

Switch to MySQLnd Already!

Without compression mysqlnd:

[root@php-mysqlnd ~]# php php-compress.php
Using 1000 iterations

IDENTIFIER EXECUTION TIME
t 217.83938813ms

Without compression libmysql:

[root@php-libmysql ~]# php php-compress.php
Using 1000 iterations

IDENTIFIER EXECUTION TIME
t 28.64038396ms

With compression mysqlnd:

[root@php-mysqlnd ~]# php php-compress.php
Using 1000 iterations

IDENTIFIER EXECUTION TIME
t 22.08642602ms

With compression libmysql:

[root@php-libmysql ~]# php php-compress.php
Using 1000 iterations

IDENTIFIER EXECUTION TIME
t 23.59013605ms

Conclusion
It’s very obvious what potential mysqlnd brings to the table and how easy it is to switch to. Since the majority of

the changes are transparent to the extension API, extending your application capabilities with MySQL storage,
diagnosing and improving performance from your application, and bringing limited scaling capabilities become
immediately possible. Learn more about mysqlnd from the manual, http://php.net/book.mysqlnd, and happy
hacking!

Twitter: @dotmanila

As Senior Consultant, JERVIN partners with Percona’s customers on building
reliable and highly performant MySQL infrastructures while also doing other fun
stuff like watching cat videos on the internet. Jervin joined Percona in April 2010.

Starting as a PHP programmer, Jervin quickly got involved with the LAMP stack.
He has worked on several high-traffic sites and a number of specialized web
applications; i.e., mobile content distribution. Before joining Percona, Jervin also
worked with several hosting companies, providing care for customer hosted
services and data on both Linux and Windows.

 www.phparch.com December 2015 | 9

phparch.com
http://php.net/book.mysqlnd
http://twitter.com/dotmanila

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2015-2,December

