
FREE

Article!

2 | January 2016 www.phparch.com

Security Corner

123456

password

12345

12345678

qwerty

123456789

1234

baseball

dragon

football

1234567

monkey

letmein

abc123

111111

mustang

access

shadow

master

michael

superman

696969

123123

batman

trustno1

daniel

computer

michael

121212

charlie

master

superman

qwertyuiop

112233

asdfasdf

jessica

1q2w3e4r

welcome

1qaz2wsx

987654321

fdsa

753951

chocolate

soccer

tigger

asdasd

jennifer

jordan

abcd1234

trustno1

buster

555555

liverpool

abc

whatever

11111111

102030

123123123

andrea

pepper

nicole

killer

abcdef

hannah

test

alexander

andrew

222222

joshua

freedom

samsung

asdfghj

purple

ginger

123654

matrix

secret

summer

1q2w3e

snoopy1

Passwords are Dead,
Long Live Passwords!
Chris Cornutt

Anyone who’s been around web applications (or really any applications) that
need to protect data or restrict access to only a certain group of users has
experience with passwords. They’re a de facto standard when it comes to
protecting applications. Along with usernames (or email addresses, depending
on the system), they’re used to identify the end user and verify that they are who
they claim to be. Unfortunately, there are many things wrong with them that
make them one of the worst options in application protection. There are whole
industries around removing or reinforcing passwords in applications, yet they’re
still a huge part of the security of most services out there. I’m getting ahead of
myself, though. First off, let’s review a little history of where passwords came from.

DisplayInfo()

Related URLs:
• PHP Password Hashing–http://php.net/book.password

phparch.com
http://php.net/book.password

 www.phparch.com January 2016 | 3

Passwords are Dead, Long Live Passwords!Passwords are Dead, Long Live Passwords!

Security Corner

Where Did Passwords Come
from, Anyway?

The concept of a password or passphrase has been
around about as long as there have been secrets to
protect. Way back in history, this something you know
was used for everything from sharing information
between groups to allowing access to certain physical
areas not open to everyone. Fast-forward to more
recent times, and there’s no shortage of movies and
books out there in which spies use them to identify
each other or messages are protected with a password
only the intended recipient should know.

Passwords were first introduced into the world
of computers in the early 1960s. A group at MIT in
Massachusetts decided that they needed a way to
segregate the time that people had to spend on the
shared computing systems owned by the university.
Passwords were used in their Compatible Time-
Sharing System (CTSS). They even had the notion
of protecting this password and not echoing it back
out to the user as he or she typed. Incidentally, many
Unix-based systems still do this, while most web
applications use a password type form field that,
though masking, still gives a visual indication of how
long the password is.

Move forward another 10 years or so, and another
password improvement came along in the form
of hashed passwords. Robert Morris added this
functionality to the origins of the operating system
we know as Unix, which used a simpler version of the
standard crypt() functionality to protect password
contents. Even then they realized that having just a
plain-text, human-readable password somewhere
wasn’t the best or most secure method for protecting
valuable resources.

Since then, password storage methods and usage
have evolved, but the heart of the usage is still the
same. Passwords are still a single point of failure that’s
usually combined with a much more public piece of
information, a username, to restrict access to portions
of applications. This is the real key to the problem:
they only offer a single point of protection that all too
often is easily compromised, leaving the system wide
open to attack.

Common Password Problems
I’ve already mentioned one of the major problems

with passwords: the single point of failure they
provide. But there are a few others that contribute to
most of the password-centric vulnerabilities out there.

Password Reuse
We’ve all done it before. If you say you haven’t,

you’re probably fibbing just a bit. There are so many
services out there, and we’re constantly signing up
for more and more every day. With almost all of them
using the same basic methods for authentication
(again, the infamous username+password combo),
it’s very easy to slip into reusing the same password
across multiple services.

Why is this a bad thing? Well, imagine you signed up
at SuperAwesomeHosting.com with an email address
for the username and a password that just happens
to be the same as the one for your email account. The
hosting company assures you that security is a top
priority for its customers and that your information is
100% safe in its systems. One day an attacker stumbles
over an unprotected development copy of the site and
discovers an SQL injection vulnerability, and harvests
all of the live user data—including your credentials.
Now the attacker has the credentials not only for your
SuperAwesomeHosting.com account but also for your
email account. Think of everything they could do if
they made the jump and tried to log in to your email!

As a developer, it’s almost impossible to prevent this
from happening, unfortunately. The only thing you can
do is try to enforce good password policies and hope
users don’t shoot themselves in the foot.

Bad Passwords
When I give presentations about security at

conferences and online training, there’s one thing I say
every single time: “People are terrible at passwords.”
As humans, there’s a built-in desire to make things as
simple as possible. This is the same habit that leads to
password reuse. Unfortunately, it also makes us lazy
about the passwords we come up with. We use things
like our pet’s name, the date we got married, or words
right from the dictionary. Take a quick look through
anyone’s social media pages and you can find answers
to most of these and just start guessing. Even worse,
when it comes time to reset your password, most
people will just tack on a 1 or ! and call it good.

This is where password policies come in. These
policies help guide users to create good passwords
that will effectively protect not only their own account
but also your service. There’s one key thing to
remember when setting up your policies: the phrase

“at least.” The real key to effective policies is to set
them up so that you define minimum requirements
and then let the user go wild from there. Sure, this can
still lead to some pretty bad passwords, but there are
plenty of tools out there that will measure the entropy
of the password to ensure it’s strong enough.

phparch.com

4 | January 2016 www.phparch.com

Passwords are Dead, Long Live Passwords!Passwords are Dead, Long Live Passwords!
Security Corner

Bad Password Storage
I want to touch on one last topic that’s a bit more developer-focused than the others in this (non-exhaustive)

list. Users put their trust in you to keep their private information safe, including the passwords they provide.
They perceive this as one of the keys to your having a secure system, so it makes sense that you’d protect this
information accordingly. Unfortunately, we hear of service after service that was
either storing their users’ passwords in plain text or, while making an effort to

“encrypt” them, only thought that an md5 of the password value was enough.

Passwords should always be one-way hashed with a strong method prior
to being stored. Any company that can send you a plain-text version of your
password or that can read it back to you during a support call is without a doubt
doing it wrong. There’s no need for anyone other than the user themselves to
know their password.

So how can I do this effectively in my application? Fortunately, it’s been made super simple since PHP 5.5 with
the password hashing functions. It’s literally a two-line process to hash what the user gives you and verify if it’s
correct:

<?php
// To hash the password
$storeMe = password_hash($_POST['userInput'], PASSWORD_DEFAULT);

// To verify the password
if (password_verify($_POST['userPassword'], $storeMe) === true) {
 echo 'yay!';
}

This method currently uses an algorithm called bcrypt that rehashes the string
provided a number of times based on the “cost” value. PHP’s default cost is 10
unless you define it as an option.

And Finally
Passwords are flawed, there’s no doubt about it. I mentioned tools and services that have come up around the

password ecosystem and that want to help remediate some of the risk associated with using passwords—two-
factor authentication and federated identity being two of the more popular options. These can do a lot to help
improve the overall security stance of the application and prevent other problems from happening, but with a
password at the core of it all, a lot of risk will still be involved.

If the only protection between your application and the outside world is a simple user-defined string of text, it
might be time to rethink and reinforce your systems. Trust me, a password just doesn’t cut it.

If you’re doing either if these
things, stop right now and go
fix your application. There are
a lot of reasons that people
give for storing passwords
poorly, but they’re all
invalid.

The cost affects how
difficult a password hash
is to crack and is meant
to increase as hardware
becomes more capable.

For the last 10+ years, CHRIS has been involved in the PHP community in one way or another.
These days he’s the Senior Editor of PHPDeveloper.org and lead author for Websec.io, a site
dedicated to teaching developers about security and the Securing PHP ebook series. He’s
written for several PHP publications and has spoken at conferences in both the U.S. and
Europe. He’s also an organizer of the DallasPHP User Group and the Lone Star PHP
Conference and works as an Application Security Engineer for Salesforce.

Twitter: @enygma

Want more articles
like this one?

phparch.com
http://twitter.com/enygma

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.

Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2016-2,January

