
Integrating W
eb Services w

ith OAuth and PH
P

M
atthew

 Frost

Matt has been writing software for fun and pro�it
for the last 15 years and is an active member of
the PHP Community. He participates in the PHP
Mentoring initiative as a mentor and apprentice.
When he’s not thinking about, writing about, or
writing code Matt enjoys baseball (speci�ically
the Chicago Cubs), playing drums and guitar,
running and goo�ing around with his kids.

Integrating Web Services
with OAuth and PHP

by Matthew Frost

Modern web applications are no longer standalone,
monolithic codebases. Instead, they are expected
to integrate with external, 3rd party applications to
allow users to tap into new features, integrate with
their social networks, and to easily migrate their
data between systems. Many services afford these
integrations by building web services that use the
OAuth standard to authenticate users and allow
“secure delegated access” on their behalf.
There are two versions of OAuth. Version 1.0 as
introduced introduced in 2007, and OAuth 2.0 was
released in 2012. Integrating Web Services with
OAuth and PHP describes the differences between the
two versions, explains the jargon associated with each,
and–most importantly–provides working PHP examples
for integrating with popular web services such as Twitter,
Tumblr, Instagram, and others. This book also includes
a primer on the HTTP protocol, highlights open-source
resources for OAuth clients and servers, and discusses
issues with OAuth and application security.

Written by PHP professional Matt Frost, this book is an
indispensable resource for any PHP developer that builds
or integrates with online applications.

www.phparch.com

Sample

Integrating Web Services with OAuth and PHP V

Table of
Contents
 Foreword 9

Chapter 1. HTTP Basics 11
The Problems with Authentication 12
Breaking Down HTTP Requests/Responses 13

Chapter 2. Introduction to OAuth 21
Challenges of Authorization and Authentication 21
Differences Between OAuth 1 and 2 23
When Do I Need a Client/Server 24
Solving Auth Challenges with OAuth 25
Removing the Magic 27
Using Existing Libraries is Good 27
Decoupling Auth 28

Sam
ple

Integrating Web Services with OAuth and PHPVI

 Table of Contents

Chapter 3. OAuth 1 Client 29
Components of an OAuth 1 Signature 29
Understanding Tokens 32
Understanding the Signature 33
Understanding the Nonce 37
Forming a Valid OAuth 1.0 Request 37

Chapter 4. OAuth 1 Server 45
Analyzing Request Components 45
Verifying Signatures 48
Distributing Tokens 50
Handling Authentication Failures 50
Handling Authorization Failures 51
Summary 51

Chapter 5. OAuth 1 Implementation 53
Existing Libraries 53
Frameworks 62
Service Providers 63
Summary 74

Chapter 6. OAuth 2 Client 75
Authorization Flow 76
Scopes 77
Grants 79
Implicit Grant 80
Resource Owner Password Credentials Grant 80
Client Credential Grant 81
Presenting the Access Token 81

Sam
ple

Integrating Web Services with OAuth and PHP VII

 Table of Contents

Chapter 7. OAuth 2 Server 83
SSL/TLS 83
Tokens and Grants 84
Access Control 87
Conclusion 88

Chapter 8. OAuth 2 Implementation 89
Existing Libraries 90
Service Providers 91
Conclusion 108

Chapter 9. Security 109
Application Security 110
Social Engineering 112
User IDs 113
Token Expiration 114
Conclusion 115

Sam
ple

Integrating Web Services with OAuth and PHP 53

OAuth 1 Implementation
We’ve covered OAuth 1 in detail; you have a general idea of why it exists and

how it works. Now it’s time to look at using OAuth 1 in a more practical sense.
If you skipped to this chapter and don’t have a decent grasp on the basics of
HTTP or a basic of understanding of what OAuth 1 was created to do, I would
encourage you to read the previous chapters. This chapter includes a signficant
amount of example code. I encourage you to have a clear understanding of any
code you didn’t write before implementing it in your own project.

This chapter will cover implementations in a couple of different categories. We’re going to take
a look at existing OAuth 1 libraries and how to use them. We will also investigate two framework
implementations, namely Zend Framework and Symfony. We will finish with example exercises
where we will actually create some calls to well-known OAuth 1 Service Providers. The code here
is going to be more than theoretical, it has been tested to work with all these frameworks and
services as of the time of this writing.

Existing Libraries
One of the largest problems we come across in the software development industry is the

amount of work it takes to verify whether an existing collection of code is trustworthy enough
for us to use. Frequently, we would rather put the work towards getting our project done, even
if it means writing our own solution instead of using an existing one. The more quickly we

Chapter

5
Sam

ple

Integrating Web Services with OAuth and PHP54

OAuth 1 Implementation

can understand and verify the existing code will fulfill our needs in a secure manner, the more
quickly we can implement it and move on to other aspects of our project or application. I present
these existing libraries without opinion as components to consider if OAuth is going to be part of
your next project.

OAuth PECL Extension
The PHP Extension Community Library (PECL) has an OAuth package which can be used to

make OAuth 1 requests. Since it’s an extension, it has to be installed, compiled, and the extension
has to be enabled in your php.ini file before you can use it to make OAuth 1 requests.

Installing
Installing the PECL extension is pretty straight forward. You’ll need to have the PHP source

files, build tools (autoconf, automake, libtool, and more), and a compiler. For complete instruc-
tions, see the PECL installation docs[1]. Assuming you have everything needed to compile them,
at the command line you can type:
pecl install oauth

An easier alternative, you should be able to install it via your Linux distribution’s package
repository. For OS X, see Rob Allen’s post on setting up PHP & Mysql for specific instructions.[2]
It’s important to make sure you have permission to install extensions; you may have to run this
command as sudo or have an admin install the OAuth extension for you.

Once you have the extension installed, you must enable the extension in your php.ini. The
same permission requirements exist, so you’ll either have to use sudo or have a server admin
edit the file for you. Once you’ve located your php.ini (which you can do with php -i from the
command line), all you need to do is add the line:
extension=oauth.so

If you are writing a command line script, it should start working. If you are running a script
through a web server, restart your web server to enable the extension. You can check if it’s
installed with the function phpinfo(). You should see the output as in Fiugre 5.1.

[1] http://php.net/install.pecl.intro
[2] Setting up PHP & MySQL on OS X Mavericks: http://akrabat.com/phpmavericks

FIGURE 5.1
Sam

ple

http://php.net/install.pecl.intro
http://akrabat.com/phpmavericks

Existing Libraries

Integrating Web Services with OAuth and PHP 55

Code
In this section, we’re actually going to review code. The first code example demonstrates how

to retrieve consumer tokens. The other snippet of code uses the PECL extension to retrieve a
tweet from the Twitter REST API. In addition to the code, there will be an explanation as to what
the code is actually doing. It is important to note this code snippet won’t utilize every available
option, but it should give you a good idea of how to use the extension.

When you create and register an application on Twitter, for example, you are assigned an API
key and a handful of URLs which will ensure a user gets authenticated correctly.

NOTE: Head over to https://apps.twitter.com to register a Twitter app. Once you register, you
will find your API key under Application Settings. Ensure that under the Permissions tab
you ask for Read, Write, and Access Direct Messages access.

Since we’re asking Twitter (in other examples it could be some other service) to handle the
difficult part of ensuring a user is who they say they are, we have to be prepared to receive the
response from the authentication request. The application itself has an API Key and an API
Secret, which allows us to identify the context in which we are trying to use the API. A user
has the same type of tokens, which will allow Twitter to identify them and make sure they are
interacting with the API in a way allowed by the application. Let’s take a look at how the PECL
extension allows us to do this.

FIGURE 5.2

Sam
ple

https://apps.twitter.com/

Integrating Web Services with OAuth and PHP56

OAuth 1 Implementation

Use PHP’s built in web server to try the code below. Save Listing 5.1 as
index.php and Listing 5.2 as callback.php in an empty directory. Then start it with
php -S 127.0.0.1:8080 while in that directory. For this to work, you’ll have to set
http://127.0.0.1:8080/callback.php in your Twitter application as the callback URL.

Listing 5.1. index.php
01. <?php
02. /**
03. * This code is going to show us how we retrieve OAuth tokens with the
04. * PECL OAuth Extension
05. */
06.
07. // API Key/Secret keys
08. $api_key = 'YOUR_APPLICATION_KEY';
09. $api_secret = 'YOUR_APPLICATION_SECRET';
10.
11. // the urls we'll need to authorize/authenticate
12. $base = 'https://api.twitter.com';
13. $request_url = $base . '/oauth/request_token';
14. $access_url = $base . '/oauth/access_token';
15. $authorize_url = $base . '/oauth/authorize';
16.
17. try {
18. $oauth = new OAuth($api_key, $api_secret, OAUTH_SIG_METHOD_HMACSHA1,
19. OAUTH_AUTH_TYPE_URI);
20. $oauth->enableDebug(); // turn this off in production...
21.
22. // First we need to get our temporary OAuth
23. // credentials (Request Tokens)
24. $request_token = $oauth->getRequestToken($request_url);
25.
26. // this will send info back that we can use to authorize
27. header('Location: ' . $authorize_url . '?oauth_token='
28. . $request_token['oauth_token']);
29. } catch (OAuthException $e) {
30. print_r($e);
31. }

Sam
ple

Discover the php[architect] guide
Book Series

spl_

Joshua Thijssen is a freelance consultant, trainer and developer.
His passion lies in high-end and complex internet systems,
code optimization and server administration. His programming
skills include-but are not limited to-PHP, C, Java, and Python,
and he has experience on a wide range of operating systems.
He is a regular speaker at international conferences and speaks
about a wide variety of subjects. You can find his blog on
http://www.adayinthelifeof.nl.

a php[architect] guide

Mastering
the SPL Library

by Joshua Thijssenhttp://phparch.com

a php[architect] guide

The Standard PHP Library (SPL) has recently gained
popularity among PHP developers. With more complex
applications and more data to process, the library’s vast
functionality can make development easier and more
efficient, but the documentation for the SPL falls far behind
PHP’s core documentation.

Mastering the SPL Library - a php[architect] guide covers all
the facets of the library, including background information
where needed. Each entry is illustrated with code examples
to give you an idea of how to use it. After reading this book,
you will be ready to use the SPL interfaces, data structures,
and - of course - the iterators.

This book is perfect for those ready to begin using the SPL
library and for those already familiar with it who wish to
learn the ins and outs of its more advanced features. With its
detailed information and code examples, this book is a great
reference for all SPL users. Developers will want it on their
desks at all times.

Zend Fram
ew

ork 1 to 2 M
igration Guide

Bart M
cLeod

Bart McLeod is a painter and sculptor and spends
most of his time programming in PHP and JavaScript.
He currently works as a self-employed Zend
Framework contributor, coach, developer, writer
and speaker. Bart holds �ive Zend Certi�ications:
PHP 4, 5, 5.3 and ZF 1 and 2. He blogs occasionally at
spaceweb.nl and he tweets @bartmcleod. You may
contact him by mail at mcleod@spaceweb.nl

Zend Framework 1 to 2
Migration Guide

by Bart McLeod

Zend Framework 1 was one of the �irst major frameworks
for PHP 5 and, for many, introduced object-oriented
programming principals for writing PHP applications.
Many developers looking to embrace a well-architected and
supported framework chose to use it as the foundation for
their applications. However, the �irst version was not without
its faults. Zend Framework 2 is a signi�icant improvement
over its predecessor. It re-designed key components,
promotes the re-use of code through modules, and takes
advantage of features introduced in PHP 5.3 such as
namespaces.

The �irst release of ZF1 was in 2006. If you’re maintaining an application
built on it, this practical guide will help you to plan how to migrate
to ZF2. This book addresses common issues that you’ll encounter
and provides advice on how best to update your application to take
advantage of ZF2’s features. It also compares how key components—
including Views, Database Access, Forms, Validation, and Controllers—
have been updated and how to address these changes in your application
code.

Written by PHP professional and Zend Framework contributor, coach,
and consultant Bart McLeod, this book leverages his expertise to ease
your application’s transition to Zend Framework 2.

www.phparch.com

ZF to

ZF2

Explore more at
http://www.phparch.com/books/

The php[architect] series of books cover topics crossing all aspects of modern
web development. We offer our books in both print and digital formats. Print
copy price includes free shipping to the US. Books sold digitally are available
to you DRM-free in PDF, ePub, or Mobi formats for viewing on any device that
supports these.

https://www.phparch.com/books

