Integrating Web Services
with OAuth and PHP

by Matthew Frost

Table of
Contents

Foreword

Chapter 1. HTTP Basics

The Problems with Authentication
Breaking Down HTTP Requests/Responses

Chapter 2. Introduction to OAuth

Challenges of Authorization and Authentication
Differences Between OAuth 1 and 2

When Do I Need a Client/Server

Solving Auth Challenges with OAuth

Removing the Magic

Using Existing Libraries is Good

Decoupling Auth

11

12
13

21

21
23
24
25
27
27
28

INTEGRATING WEB SERVICES WITH OAUTH AND PHP

TABLE OF CONTENTS

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

OAuth 1 Client

Components of an OAuth 1 Signature
Understanding Tokens
Understanding the Signature
Understanding the Nonce

Forming a Valid OAuth 1.0 Request

OAuth 1 Server

Analyzing Request Components
Verifying Signatures

Distributing Tokens

Handling Authentication Failures
Handling Authorization Failures

Summary

OAuth 1 Implementation

Existing Libraries
Frameworks
Service Providers

Summary

OAuth 2 Client

Authorization Flow

Scopes

Grants

Implicit Grant

Resource Owner Password Credentials Grant
Client Credential Grant

Presenting the Access Token

29

29
32
33
37
37

45

45
48
50
50
51
51

53

53
62
63
74

75

76
77
79
80
80
81
81

INTEGRATING WEB SERVICES WITH OAUTH AND PHP

TABLE OF CONTENTS

Chapter 7. OAuth 2 Server 83
SSL/TLS 83
Tokens and Grants 84
Access Control 87
Conclusion 88
Chapter 8. OAuth 2 Implementation 89
Existing Libraries 90
Service Providers 91
Conclusion 108
Chapter 9. Security 109
Application Security 110
Social Engineering 112
User IDs 113
Token Expiration 114
Conclusion 115

INTEGRATING WEB SERVICES WITH OAUTH AND PHP

VII

Chapter

OAuth 1 Iimplementation

We've covered OAuth 1 in detail; you have a general idea of why it exists and
how it works. Now it’s time to look at using OAuth 1 in a more practical sense.
If you skipped to this chapter and don’t have a decent grasp on the basics of
HTTP or a basic of understanding of what OAuth 1 was created to do, I would
encourage you to read the previous chapters. This chapter includes a signficant
amount of example code. I encourage you to have a clear understanding of any
code you didn’t write before implementing it in your own project.

This chapter will cover implementations in a couple of different categories. We're going to take
a look at existing OAuth 1 libraries and how to use them. We will also investigate two framework
implementations, namely Zend Framework and Symfony. We will finish with example exercises
where we will actually create some calls to well-known OAuth 1 Service Providers. The code here
is going to be more than theoretical, it has been tested to work with all these frameworks and
services as of the time of this writing.

Existing Libraries

One of the largest problems we come across in the software development industry is the
amount of work it takes to verify whether an existing collection of code is trustworthy enough
for us to use. Frequently, we would rather put the work towards getting our project done, even
if it means writing our own solution instead of using an existing one. The more quickly we

INTEGRATING WEB SERVICES WITH OAUTH AND PHP 53

OAUTH 1 IMPLEMENTATION

can understand and verify the existing code will fulfill our needs in a secure manner, the more
quickly we can implement it and move on to other aspects of our project or application. I present
these existing libraries without opinion as components to consider if OAuth is going to be part of
your next project.

OAuth PECL Extension

The PHP Extension Community Library (PECL) has an OAuth package which can be used to
make OAuth 1 requests. Since it’s an extension, it has to be installed, compiled, and the extension
has to be enabled in your php. ini file before you can use it to make OAuth 1 requests.

Installing

Installing the PECL extension is pretty straight forward. You’ll need to have the PHP source
files, build tools (autoconf, automake, libtool, and more), and a compiler. For complete instruc-
tions, see the PECL installation docs!!. Assuming you have everything needed to compile them,
at the command line you can type:

pecl install oauth

An easier alternative, you should be able to install it via your Linux distribution’s package
repository. For OS X, see Rob Allen’s post on setting up PHP & Mysql for specific instructions.”
It’s important to make sure you have permission to install extensions; you may have to run this
command as sudo or have an admin install the OAuth extension for you.

Once you have the extension installed, you must enable the extension in your php. ini. The
same permission requirements exist, so you’ll either have to use sudo or have a server admin
edit the file for you. Once you've located your php. ini (which you can do with php -i from the
command line), all you need to do is add the line:
extension=oauth.so

If you are writing a command line script, it should start working. If you are running a script
through a web server, restart your web server to enable the extension. You can check if it’s

installed with the function phpinfo (). You should see the output as in Fiugre 5.1.

[1] http://php.net/install. pecl.intro
[2] Setting up PHP & MySQL on OS X Mavericks: http://akrabat.com/phpmavericks

54

INTEGRATING WEB SERVICES WITH OAUTH AND PHP

http://php.net/install.pecl.intro
http://akrabat.com/phpmavericks

EXISTING LIBRARIES

Code

In this section, we're actually going to review code. The first code example demonstrates how
to retrieve consumer tokens. The other snippet of code uses the PECL extension to retrieve a
tweet from the Twitter REST API. In addition to the code, there will be an explanation as to what
the code is actually doing. It is important to note this code snippet won't utilize every available
option, but it should give you a good idea of how to use the extension.

When you create and register an application on Twitter, for example, you are assigned an API
key and a handful of URLs which will ensure a user gets authenticated correctly.

NOTE: Head over to https://apps.twitter.com to register a Twitter app. Once you register, you
will find your API key under Application Settings. Ensure that under the Permissions tab
you ask for Read, Write, and Access Direct Messages access.

Since we're asking Twitter (in other examples it could be some other service) to handle the
difficult part of ensuring a user is who they say they are, we have to be prepared to receive the
response from the authentication request. The application itself has an API Key and an API
Secret, which allows us to identify the context in which we are trying to use the APL. A user
has the same type of tokens, which will allow Twitter to identify them and make sure they are
interacting with the API in a way allowed by the application. Let’s take a look at how the PECL

extension allows us to do this. m

INTEGRATING WEB SERVICES WITH OAUTH AND PHP 55

https://apps.twitter.com/

OAUTH 1 IMPLEMENTATION

Use PHP’s built in web server to try the code below. Save Listing 5.1 as
index.php and Listing 5.2 as cal Lback . php in an empty directory. Then start it with
php -S 127.0.0.1:8080 while in that directory. For this to work, you’ll have to set
http://127.0.0.1:8080/cal Lback.php in your Twitter application as the callback URL.

Listing 5.1. index.php
07. <?php
02. /**
03. * This code is going to show us how we retrieve OAuth tokens with the
04. = PECL OAuth Extension
05. */
06.
07. // API Key/Secret keys
08. $api_key = 'YOUR_APPLICATION_KEY';
09. $api_secret = 'YOUR_APPLICATION_SECRET';
10.
11. // the urls we'll need to authorize/authenticate
12. $base = 'https://api.twitter.com';
13. $request_url = $base . '/oauth/request_token';
14. $access_url = $hase . '/oauth/access_token';
15. $authorize_url = $base . '/oauth/authorize';

16.

17. try {

18. $oauth = new OAuth($api_key, $api_secret, OAUTH_SIG_METHOD_HMACSHA1,
19. OAUTH_AUTH_TYPE_URI);

20. $oauth-DenableDebug(); // turn this off in production...

21.

22. // First we need to get our temporary OAuth
25. // credentials (Request Tokens)
24, $request_token = $oauth->getRequestToken ($request_url);

25.

26. // this will send info back that we can use to authorize
27. header (‘Location: ' . $authorize_url . '?oauth_token='
28. . $request_token['oauth_token']);

29. } catch (OAuthException $e) {
30. print_r($e);
3.}

56 INTEGRATING WEB SERVICES WITH OAUTH AND PHP

Discover the phplarchitect] guide
Book Series

Zend Framework 1 to 2
Migration Guide
by Bart McLeod

A 2 phplarchitect] guide
A a phplarchitect] guide
——
—
/
/

Mastering
the SPL Library

by Joshua Thijssen

The phplarchitect] series of books cover topics crossing all aspects of modern
web development. We offer our books in both print and digital formats. Print
copy price includes free shipping to the US. Books sold digitally are available
to you DRM-free in PDF, ePub, or Mobi formats for viewing on any device that
supports these.

Explore more at

http://www.phparch.com/books/

https://www.phparch.com/books

