
FREE

Article!

2 \ March 2016 \ www.phparch.com

FEATURE

Object-Relational
Mapping with
Laravel’s Eloquent
Luis Atencio

Object-relational mapping—ORM for short—has been a
challenge in software system development for many years. In basic
terms, this difficulty arises when attempting to match an object-oriented system to a relational
database or RDBMS. Objects are very free and lenient structures that can contain many
different types of properties, including other objects. While object graphs are free to grow
organically via inheritance, relational entities are rather flat and contrived, defining a very
limited set of types. So can you transpose an object-oriented model onto a relational model?
While this remains a very hard problem to solve, there are ORM solutions that can emulate
the same effect by creating a virtual object database. One such solution is Laravel’s Eloquent
ORM framework. Eloquent provides the abstractions needed for you to be able to work with
relational data as if it were loaded onto an inherited object model.

Introduction
ORM Mapping is a technique for converting data from the world

of objects into the world of relations (and vice versa), or tables in
the sense of a typical RDBMS. This eliminates the need for building
a very complex adapter layer in charge of reading relational data
from, say, a MySQL database, into objects. ORM tools also abstract
out the details of mapping logic, i.e., managing reads and writes, as
well as one-to-one or one-to-many relationships.

In case you’re not familiar with the technology, I’ll provide brief
introductions to both Laravel and Eloquent.

Laravel
Laravel1 is a PHP web MVC application framework designed

to abstract the common pain points associated with applications
pertaining to: authentication, routing, middleware, caching, unit
testing, and inversion of control. In many ways, it’s similar to the
Rails platform that dominates Ruby web development. Built into
Laravel is a component called Eloquent ORM.

1 Laravel: https://laravel.com

Eloquent ORM
Eloquent ORM2 is PHP’s response to very successful ORM

frameworks such as Hibernate and Rails, available in Java and Ruby
respectively, for many years. These ORM tools nicely implement the
ActiveRecord3 design pattern that treats objects as relational rows in
a database. This pattern puts the M in MVC—the model—which
facilitates the creation of objects whose data need to be persisted
and read from a database. In simple terms, in ActiveRecord the
bulk of the logic for carrying out data access operations are shoved
into your model classes, in contrast to having it all reside in a data
access object (DAO). In this model, the class definition maps to the
relational table per se, while instances of the object constitute the
individual rows.

Common ORM Strategies
ORMs, like Eloquent, connect these rich objects to tables using

different strategies. In this article, I will go over the two most popu-
lar ones:

• Concrete Table Strategy4

• Single Table Strategy5

Concrete (Class) Table Inheritance (CTI)
Because relational databases do not support inheritance (theo-

retically speaking), thinking of tables from an object instance point
of view is incredibly challenging. Given that there is no automatic
way for data to trickle down from “parent” tables to any “derived”
tables, it’s natural to think that each child object would map to its

2 Eloquent ORM: https://laravel.com/docs/5.0/eloquent
3 Active Record Patter: http://phpa.me/fowler-ar
4 Concrete Table Inheritance: http://phpa.me/fowler-sti
5 Single Table Inheritance: http://phpa.me/fowler-sti

FIGURE 1ORM Mapping

class

class

class

class M
ap

p
in

g
 L

o
g

ic

phparch.com
https://laravel.com
https://laravel.com/docs/5.0/eloquent
http://phpa.me/fowler-ar
http://phpa.me/fowler-sti
http://phpa.me/fowler-sti

 www.phparch.com \ March 2016 \ 3

Object-Relational Mapping with Laravel’s Eloquent

own concrete table. Consider this very simple model for a car deal-
ership application:

And this strategy would work well for very diverse classes or data
types that share only a minimal set of attributes and contain many
specialized child attributes, but results in lots of duplication when
the amount of inherited data is greater. As in this case, you can see
that I needed to repeat the make, model, year, and trim columns in
every table. It seems that for this example, since we have very simple
child types and flat class hierarchy, I could benefit from consolidat-
ing the data of an object model into a single table, known as Single
Table Inheritance.

Single Table Inheritance (STI)
Instead of creating dedicated tables for each child type, a single

table is used to house all of the data contained inside an object
graph. A type column, also known as a Discriminator column, is
used to discern among the different types of objects in the graph.

Despite storing the data in a single table, ORM tools can easi-
ly map this onto different objects at runtime, abstracting the
persistence strategy from you and the application. Let’s jump into
the implementation details.

Implementation
Before we get deep into the object definitions and queries, let’s

take care of some housekeeping application setup. Because Laravel
and all of its packages are loaded via Composer, let’s begin by defin-
ing the project level composer.json file. I will be using Laravel 5.0,
see Listing 1.

Configuration
In Listing 1, I left out some of the other

configuration parameters and kept the
pertinent ones. If you’ve set up a Laravel appli-
cation before, you should be familiar with this
configuration. As you know, Laravel sets up
the web application code under the app fold-
er, which corresponds to the App namespace.
Here you will find all of the code related to
controllers, events, handlers, routing, etc.

Instead of sprinkling custom code every-
where, I will create a project directory for all
of my custom classes called EloquentDemo.

Class Structure
The class structure (model) that drives all

of the business logic and persistence will be
stored in the Model directory, defining the
package App\EloquentDemo\Model, under-
neath which my virtual object database will
reside.

<<table>>
Economy

make
model

year
trim

<<table>>
Luxury

make
model

year
trim

start_rating

<<table>>
Truck

make
model

year
trim

addn_cargo

Vehicle

make
model

year
trim

Economy Luxury

star_rating

Truck

addn_cargo

FIGURE 2Concrete Mapping

LISTING 1
01. {
02. "name": "phparch/eloquent-laravel-demo",
03. "description": "PHPArch Laravel Eloquent Sample Code",
04. "type": "project",
05. "require": {
06. "laravel/framework": "5.0.20",
07. "phaza/single-table-inheritance": "1.0.1"
08. },
09. "require-dev": {
10. "phpunit/phpunit": "4.6.2",
11. "phpspec/phpspec": "~2.1"
12. },
13. "autoload": {
14. "classmap": [
15. "database"
16.],
17. "psr-4": {
18. "App\\": "app/"
19. }
20. }
21. }

<<table>>
Vehicles

make
model

year
trim

star_rating
addn_cargo

Vehicle

make
model

year
trim

Economy Luxury

star_rating

Truck

addn_cargo

FIGURE 3Single-Table Mapping

phparch.com

4 \ March 2016 \ www.phparch.com

Object-Relational Mapping with Laravel’s Eloquent

BaseModel
Every object that will be acting as an ActiveRecord must be an

instance of Eloquent’s Model. Model defines abstract behavior that
applies generally to all instances. Because there’s some general
behavior that applies to all of my application objects as well, it’s a
good idea to create an abstract class between my custom classes and
Eloquent’s Model class. This will give you additional flexibility in the
future to define shared properties and methods. Suppose I want to
use soft deletes instead of hard deletes—I can easily install this trait
in the base class (See Listing 2).

Parent Type = Single Table
With this out of the way, I will create the object hierarchy that

takes advantage of single inheritance. I will define an abstract
Vehicle class, which corresponds to the vehicles database table,
which I’ll create with the Laravel migration script in Listing 3.

To implement the object-table mapping, I will use the phaza/
single-table-inheritance6 composer package (configuration shown
in Listing 4) to instrument the parent type, via a trait.

This library requires a very minimal set of artifacts: a protect-
ed $singleTableTypeField field used to define the discriminator
column and $singleTableSubclasses array containing the path to
the model classes whose data will be shared by this single table. This
is really clean because you don’t have to expose the internal details
of the inheritance mapping to Controller layer, allowing the trait to
internally take complete control of these objects and their behavior.

6 phaza/single-table-inheritance: http://phpa.me/phaza-sti

LISTING 2
22. <?php
23. namespace App\EloquentDemo\Model;
24.
25. use Illuminate\Database\Eloquent\Model;
26. use Illuminate\Database\Eloquent\SoftDeletes;
27.
28. /**
29. * Base class for all models in the system
30. *
31. * @author Luis Atencio
32. * @package App\EloquentDemo\Model
33. */
34. abstract class BaseModel extends Model {
35.
36. use SoftDeletes;
37.
38. /**
39. * Return the database record ID for all tables
40. *
41. * @return integer
42. */
43. public function getId() {
44. return $this->id;
45. }
46.
47. /**
48. * Save the record ID
49. *
50. * @return mixed
51. */
52. public function setId($id) {
53. $this->id = $id;
54. }
55. }

LISTING 3
01. <?php
02. use Illuminate\Database\Schema\Blueprint;
03. use Illuminate\Database\Migrations\Migration;
04.
05. class CreateVehicleTable extends Migration {
06.
07. /**
08. * Create vehicle table
09. *
10. * @return void
11. */
12. public function up() {
13. Schema::create('vehicles', function(Blueprint $table) {
14. $table->increments('id');
15. $table->string('vehicle_type');
16. $table->unsignedInteger('make_id');
17. $table->unsignedInteger('model_id');
18. $table->unsignedInteger('trim_id');
19. $table->unsignedInteger('year');
20. $table->boolean('addn_cargo')->default(false);
21. $table->tinyInteger('star_rating')->nullable();
22. $table->timestamps();
23. $table->softDeletes();
24. });
25. }
26.
27. /**
28. * Drop vehicle table
29. *
30. * @return void
31. */
32. public function down() {
33. Schema::drop('vehicles');
34. }
35. }

Workflow	 automa,on	

Training	 and	 coaching	

PHP	 Consul,ng	 Services	

www.in2it.be	

PROFESSIONAL	 PHP	 SERVICES

in it2

phparch.com
http://phpa.me/phaza-sti
http://www.in2it.be

 www.phparch.com \ March 2016 \ 5

Object-Relational Mapping with Laravel’s Eloquent

Now, let’s create the subtypes. To keep things short, I’ll just show
one of the child objects, Truck (see Listing 5); you can decipher the
rest easily.

Now that we’ve set this up, let’s show how easy it is to create and
read records of any type.

Writing to the Database
I can write a record in the database explicitly by defining type

(see Listing 6).
Better yet, I can leverage the functionality of STI to create and

read items of any type as shown in Listing 7.

Reading from the Database
This single table strategy allows you to read data polymorphically

for any vehicle type, and seamlessly taking care of any associations
just like any other model class would. Consider the simple queries
in Listing 8.

As you can see, by using Laravel’s Eloquent ORM with this config-
uration there’s absolutely nothing else you need to do to support
STI. This is the real beauty of a setup like this. In an MVC world,
you make your changes at the database and Model levels but your
Controllers and Views are handled just like any other model. As
far as you are concerned, each object has its own persistent storage.

Pros and Cons
There are many considerations to keep in mind when deciding

whether STI is suitable for your application. Here’s a short list of the
pros and cons of using STI:

LISTING 4
01. <?php
02.
03. namespace App\EloquentDemo\Model;
04.
05. use DB;
06. use Phaza\SingleTableInheritance\SingleTableInheritanceTrait;
07.
08. /**
09. * Represents parent base model
10. *
11. * @author luisat
12. * @package App\EloquentDemo\Model
13. */
14. class Vehicle extends BaseModel {
15.
16. use SingleTableInheritanceTrait;
17.
18. /**
19. * The database table used by the model.
20. *
21. * @var string
22. */
23. protected $table = 'vehicles';
24.
25. /**
26. * STI table column name
27. *
28. * @var string
29. */
30. protected static $singleTableTypeField = 'vehicle_type';
31.
32. /**
33. * Display name
34. *
35. * @var string
36. */
37. protected $displayName;
38.
39. /**
40. * STI class names
41. *
42. * @var array
43. */
44. protected static $singleTableSubclasses = [
45. Economy::class, Truck::class, Luxury::class
46.];
47.
48. /**
49. * The attributes that are mass assignable when reading from DB
50. *
51. * @var array
52. */

53. protected $fillable = [
54. 'vehicle_type',
55. 'make_id',
56. 'model_id',
57. 'trim_id',
58. 'year',
59. 'addn_cargo',
60. 'star_rating'
61.];
62.
63. public function getType() {
64. return $this->vehicle_type;
65. }
66.
67. public function getMakeId() {
68. return $this->make_id;
69. }
70.
71. public function getModelId() {
72. return $this->model_id;
73. }
74.
75. public function getTrimId() {
76. return $this->trim_id;
77. }
78.
79. /**
80. * Load the Make record for this vehicle
81. * @return Make
82. */
83. public function make() {
84. return $this->hasOne(Make::class, 'id', 'make_id');
85. }
86.
87. /**
88. * Load the Model record for this vehicle
89. * @return Model
90. */
91. public function model() {
92. return $this->hasOne(Model::class, 'id', 'model_id');
93. }
94.
95. /**
96. * Load the Trim record for this vehicle
97. * @return Trim
98. */
99. public function trim() {
100. return $this->hasOne(Trim::class, 'id', 'trim_id');
101. }
102. }

phparch.com

6 \ March 2016 \ www.phparch.com

Object-Relational Mapping with Laravel’s Eloquent

Pros
• Simple to implement, perhaps for quick spiking tasks and

simple apps.
• Easy to add new classes by simply adding additional

columns.
• Supports polymorphic queries with a simple discriminator

column.
• Data access and reporting are quick since all the informa-

tion is stored in one table.

Cons
• Tight coupling of objects to tables. A major refactoring

effort on your classes would cause changes to your table
structure as well.

• Space potentially wasted due to jagged data. This can occur
when child types evolve with many unique attributes.

• Table quickly grows when supporting deeply nested hier-
archies.

When to use
This is ideal for simple and/or shallow class hierarchies that

have lots of overlap with parent types and clear inheritance hier-
archy.

Final Comments
In this article I showed you how to use a Single Table Inheri-

tance (STI) mapping scheme to model a simple object graph. This
will allow you to emulate inheritance in relational databases. The
caveat to this strategy, though, is that there must be a clear and
natural class hierarchy; otherwise, STI may be hard to maintain.
A common problem that might occur is that your child types

develop too many unique attributes, creating lots of non-global
columns in a single table.

ORM frameworks like Laravel’s Eloquent can be used to work
with several strategies very effectively, but ORMs are not the only
solution. Other people gravitate toward the NoSQL databases,
such as MongoDB, because it allows them more flexibility as data
is stored more freely in a schemaless object form. This avoids
having to translate between the contrived, restricted relational
form into objects. Nevertheless the strong principles behind rela-
tional databases continue to be very appealing for developers and
system architects, so ORMs are and will be used very frequently
in modern web applications for many years to come.

Luis Atencio is a Staff Software
Engineer for Citrix Systems in Ft. Lauder-
dale, FL. He has a B.S. and an M.S. in
Computer Science. He works full time
developing and architecting web appli-
cations with Java, PHP, and JavaScript.
When he is not coding, Luis writes a devel-
oper blog at http://luisatencio.net focused

on software engineering. Luis is also the author of
Functional Programming in JavaScript7 (Manning 2016). @luijar

7 https://www.manning.com/books/
functional-programming-in-javascript

LISTING 5
01. <?php namespace App\EloquentDemo\Model;
02.
03. /**
04. * Derived vehicle type: Truck
05. *
06. * @author luisat
07. * @package App\EloquentDemo\Model
08. */
09. class Truck extends Vehicle
10. {
11. /**
12. * Single inheritance table type
13. *
14. * @var string
15. */
16. protected static $singleTableType = 'Truck';
17.
18. /**
19. * Display name for the model
20. *
21. * @var string
22. */
23. protected $displayName = 'Truck';
24.
25.
26. public function getAdditionalCargo() {
27. return $this->addn_cargo;
28. }
29.
30. public function setAdditionalCargo($addnCargo) {
31. $this->addn_cargo = $addnCargo;
32. }
33. }

LISTING 6
01. $data = [
02. 'vehicle_type' => 'Luxury',
03. 'make_id' => Make::firstByAttributes(['name' => 'Toyota'])->id,
04. 'model_id' => Model::firstByAttributes(['name'=> 'Camry'])->id,
05. 'trim_id' => Trim::firstByAttributes(['name' => 'Camry LE'])->id,
06. 'year' => 2015,
07. 'addn_cargo' => false,
08. 'star_rating' => 4
09.];
10.
11. $camry = Vehicle::create($data);
12.
13. //...
14.
15. Vehicle::find($camry->id); //-> Vehicle(1)

LISTING 7
01. Truck::create([
02. 'make_id' => Make::firstByAttributes(['name' => 'Ford'])->id,
03. 'model_id' => Model::firstByAttributes(['name'=> 'F150'])->id,
04. 'trim_id' => Trim::firstByAttributes(['name' => 'Limited'])->id,
05. 'year' => 2015,
06. 'addn_cargo' => true,
07. 'star_rating' => 5
08.]);

LISTING 8
01. // Reading and updating a collection of truck records
02. Truck::where('year', '>', 2014)
03. ->update(['trim_id' => Trim::firstByAttributes(
04. ['name' => 'XL'])->id]
05.);
06.
07. // Load associations
08. Luxury::find($camry->id)->model; //-> Model('Camry')
09. Luxury::find($camry->id)->make; //-> Make('Toyota')
10.
11. // Query all vehicles in the database
12. Vehicle::all(); //-> Collection[Luxury(1), Truck(2), ...]

Want more articles
like this one?

phparch.com
http://luisatencio.net
http://twitter.com/luijar
https://www.manning.com/books/functional-programming-in-javascrip
https://www.manning.com/books/functional-programming-in-javascrip

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.
Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2016-2,March

