
FREE Article!

2 \ March 2016 \ www.phparch.com

FEATURE

Learn from the Enemy:
Securing Your Web
Services, Part One
Edward Barnard

Knowing how to secure your website does not translate into knowing how
to secure your web service. Your website is friendly to humans. You can
fend off attacks with CAPTCHA and other ways of detecting and rejecting
automated traffic. Your web services, by contrast, are to be consumed by non-
humans. If you have a flagship mobile app, it’s not a human. It’s an app! You
therefore need to take a far different approach to securing your web services. I’ll
show you my experiences and the attitude you need to protect your own.

It Happens
On September 14, 2015, Business Wire announced1:

Kim Kardashian West, Khloé Kardashian, Kendall Jenner and
Kylie Jenner today launched new Personal Media Apps – and websites

– allowing them to connect more directly with their fans and provide a
unique and personal look into their lives.

Two days later, on September 16, 2015, TechCrunch published
an article Kardashian Website Security Issue Exposes Names, Email
of Over Half a Million Subscribers, Payment Info Safe2. he article
describes the discoveries of 19-year-old sotware developer Alaxic
Smith.

Alaxic Smith reported that the Kardashian app had a JavaScript
ile providing client (app) access to the website API. So long as he
was logged into the website himself, he could get the web services
to respond with information on the 663,270 people who had signed
up for the site. he other sisters’ sites behaved identically.

It happens!

Getting the Attitude
Fiteen years ago I wrote a series of articles, How to Hack a

Paysite: What the Good Guys Need to Know, ater spending time
among hackers and crackers. hese days I wouldn’t recommend the

“dark web” to anyone, not with the rise of organized crime online.
But back then, I was rated “Master Exploiter” by my putative peers,
was allowed in the more private “Sploiters” forums, and was made
an admin of one of the larger boards.

Publishing those articles made certain people unhappy. On the
other hand, a couple of billing companies changed their code as a
result, and thanked me.

My own security interest stems from November 1988, when
the Morris Worm3 was released into the wild. I was teaching Cray

1 Busines Wire: he Kardashian/Jenner Sisters Launch Individual
Personal Media Apps: http://phpa.me/kardashian-apps

2 TechCrunch: Kardashian Website Security Issue:
http://wp.me/p1FaB8-54RC

3 Morris Worm: https://en.wikipedia.org/wiki/Morris_worm

Supercomputer operating system internals in assembly language
and octal. Several of my students that week were from the govern-
ment labs being hit by the worm. hey were the system gurus, and
as such they kept being called out of class to get on the phone.

I had virtually a ringside seat to the breaking of the Internet. It
literally was torn apart, with backbones isolated from each other for
a few days to stomp the worm.

Robert Morris and his Worm taught us that relatively minor
mischief can cause major havoc. Learn from the experience.

Learn from the Enemy
here’s good PHP security information available online. See

Additional Reading at the end of this article. here’s also informa-
tion out there that’s not so good. hat’s not necessarily the fault of
the author. “Security” is a continuous battle. Techniques and needs
evolve.

My best advice concerning web services comes from Ender’s
Game by Orson Scott Card:

You will be about to lose, Ender, but you will win. You will learn to
defeat the enemy. He will teach you how.

Your irst step in securing your web services is understanding
your adversarial relationship. No doubt your website is usable,
friendly, inviting. hat’s great.

hat is not how to view your web services. Your web services
need to be prickly and distrusting. Don’t you want to be friendly
and inviting? No, you do not! his is the fundamental diference
between your human-visible website and your invisible web
services.

Guide your humans in successfully navigating your website.
When errors occur—and they will—provide your humans the
information they need to complete their task.

Your web services, by contrast, are aimed at computer sotware
that already know precisely how to use your web services API.
Client sotware does not need your guidance. Extra information
would just get in the way.

Instead, remember that there is one other consumer of your web

phparch.com
http://phpa.me/kardashian-apps
http://wp.me/p1FaB8-54RC
https://en.wikipedia.org/wiki/Morris_worm

 www.phparch.com \ March 2016 \ 3

Learn from the Enemy: Securing Your Web Services, Part One

services. Your enemy, whoever that might be, is also consuming
your web services. Do you want to help your enemy hack you? Of
course not!

As we’ll see, there may be no way to be sure if any given web
service request is legitimate or an attack from the enemy. You must
be distrusting. You must assume that your web services operate in a
hostile environment. hat’s because they do!

Suppose the web service request is partly correct. For example,
it’s a properly formed request except that one parameter is out of
range. Do you provide help? No. When it comes to web services,
your role is to be prickly and distrusting. Your role is to assume you
have an attacker who has almost igured you out.

In Ender’s Game, Ender explains:

I’ve been through a lot of ights in my life, sometimes games, some-
times—not games. Every time, I’ve won because I could understand
the way my enemy thought. From what they did. I could tell what they
thought I was doing, how they wanted the battle to take shape. And
I played of of that. I’m very good at that. Understanding how other
people think.

Are we planning to play games with our attackers? Absolutely not.
We don’t have time for that nonsense! Our strategy is to tip the odds
in our favor. Once the efort to attack far outweighs the possible
reward, we are far less likely to come under attack at all.

What might your attackers’ motivations be? Cash, glory, free
content downloads? Draw from your experience to date and form
your own threat analysis. he attack method can be diferent via web
services, but the attack motivations will likely remain the same.

hreat Modeling: What motivates your attacker? What might
he, she, or they be ater? What might be their intrusion vector? his
is threat modeling. See hreat Modeling: Designing for Security by
Adam Shostack under Additional Reading.

Web Services are Different
We’ve all seen “brute force” attacks before. Someone hits your

website login page many times with diferent user name & password
combinations. Alarms go of, you block a few dozen IP addresses,
and it’s “game over” for your attacker of the moment.

We all use CAPTCHA images during brute-force attacks to
distinguish and shut down the “bots.” Everything works; we’ve been
through this before.

Do you see the attitude here? It’s just another brute force attack,
no big deal. Detect the bot and shut it down. It’s hardly worth
mentioning.

herein lies the problem.

We need to back up and take a moment to think about how we
got here. Bear with me; this is the fundamental change in thinking
you need to understand.

Web Services Mirror the Site
Web services are a good thing. If you have created a well-struc-

tured RESTful API powered by PHP, you have a good thing. You
have an ininitely expressive portal into your server, your business
operations, your reason for existence. You’d best assume that your
enemy understands this as well as you do.

We created an app for Android and iOS mobile devices. Members
can now use our site through either their web browser or via the
native app.

We created web services which allow our app to have the same
functionality as our browser-based website. Our web services are
only consumed by our own app. We don’t publish a public API.
Since nobody knows where to ind our web service end points, that
should make us relatively safe.

No, it does not! Learn from your enemy.

Suppose, for example, you notice that a single IP address has an

phparch.com
http://nomadphp.com
http://twitter.com/nomadphp

4 \ March 2016 \ www.phparch.com

Learn from the Enemy: Securing Your Web Services, Part One

excessive number of failed login attempts. By capturing the trans-
actions (web service requests and responses for that IP address),
you realize that each request has a diferent user name / password
combination. he login requests are formatted correctly.

What has our enemy taught us? hat he or she has our API igured
out. Our enemy is able to counterfeit our web services requests. We
do not know how our enemy igured this out. Our enemy has taught
us that our web services protocol is known, inside and out.

Our Focus
here’s lots of good information out there about website security

and web services security. By all means, do your homework and
practice the fundamentals!

he problem is that your enemy won’t feel constrained to follow
your rules. You need to work with what your enemy does rather than
stay within the security rules. he experts will provide you help, but
only the enemy can teach you how to defeat the enemy.

Security is a continuous give-and-take. Learning is continuous;
you can’t “do it” and be done.

his article doesn’t cover the fundamentals. Yes, the fundamen-
tals are important, and they must be your starting point, but you
won’t ind them here. Instead we focus on learning from the attacks,
from our enemy.

An App is a Bot
Here is where the irst of the problems comes in. Here is where

we need to begin changing our thinking.

Much of your website security is based on telling the diference
between a human attacking us and a bot attacking us.

You need to recognize why you might come under attack. Are
you simply a target of opportunity? And if so, opportunity for what?
Are you a high-proile site? Might someone attack for the glory of
beating you? Can someone gain free downloads?

With a bot, it’s oten a series of repeated attempts. For example, if
someone is running a password list, we see thousands (or millions)
of login attempts. If it’s blatant, we simply block it. If it’s merely
questionable, we use something such as a CAPTCHA to distinguish
between human and bot.

By “bot,” short for “robot,” I mean any sort of automated mecha-
nism for interacting with our website.

he fundamental problem is that your own app is a bot. It’s a
program, not a human, and by deinition a bot. More to the point,
any of your “are you a human?” tests will fail. It’s not a human.

You may well need to “white list” your web services. hat is,
anything you have in place for bot detection, brute-force attacks,
etc., will block normal app usage.

he problem is that an attacker can format and send an HTTPS
request to your web services API which looks exactly like a legit-
imate request coming from your app. he headers are the same.
here is no “secret handshake” telling you that “this is your app
talking” and “this is not your app talking.”

Your enemy can spoof your app. his is a startling realization. You
must understand this! his may mean that your irewall won’t help,
because your irewall can’t tell the diference between legitimate app
traic and your enemy’s attack traic. You need to think diferently.

As developers, we blithely assume that the usual server-level
protections are in place. Ater all, it’s the same server! It’s the same
code base, the same load balancer, the same irewall coniguration.

Assuming you use HTTPS for all web services, and have it
correctly conigured, you’re covered. Right? Wrong! Your enemy
will be only too happy to show you what you’ve missed.

Lesson: How do you distinguish between normal users and attack-
ers? With web services, you generally can’t. hat’s why it’s so easy for
your attacker to appear as “a wolf in sheep’s clothing.” Attacks can go
unnoticed.

Web Services Need to be Eicient
You put your app in app stores so that people will install and

use it. If a million people have your app, and they all use it, that
amounts to a potential Distributed Denial of Service attack coming
from a million diferent places. hat is a widespread attack, and that
is precisely the problem that we all hope to have!

Under the covers, of course, each copy of the app is making GET
and POST requests to your server via HTTPS.

he web services code can be far more eicient than a normal
web page load. he web services don’t need to worry about HTML
rendering or navigation bars. For example, you don’t need to check
the member mailbox if the mailbox content is not part of the current
web service response.

RESTful web services are stateless. Generally speaking, the
outcome of one web service request should not depend on the
outcome of the previous web service request, or the next one. You
probably don’t even need the standard PHP session when imple-
menting your web services.

his means we are all able to make our web service responses
fast. Our web services have a far lighter load on our databases. We
only hit the database for what we speciically need with this request.

his is all a good thing, right? Our enemy will show us otherwise.
Keep this “eiciency” in mind as we look at a common example,
running the password list.

Running the Password List
Taking a concrete example, the answer is obvious (ater the fact).

When an attacker runs a password list against the main website,
most large sites detect it rather quickly. he site administrators see
a run of failed logins from the same IP address or series of proxies.
DevOps is likewise aware of other attack possibilities and watches
for them.

With web services, it’s diferent. You expect a lot of traic from
the web service. Because legitimate app traic looks just like bot
traic, the normal bot-detection approaches don’t work.

Are members allowed to log in to your site via the app? hat is,
do your web services support member login? Remember that your
web services are designed to be a lot faster than the main site pages.

Putting it together, this means that your attacker can run through
their password list a lot faster when attacking via your web services.
Your enemy will teach you that this is not a good thing! With the
web services being so much more lightweight and eicient, your
enemy can do a lot of damage before you know anything is wrong.

How do you protect your login web service from someone running a
password list? We’ll cover that in Part Two of this series.

phparch.com

 www.phparch.com \ March 2016 \ 5

Learn from the Enemy: Securing Your Web Services, Part One

An Open Portal
Continuing our example, say somebody ran a password list

against your login web service. You learn to block the attack and
move on. Your own eforts at writing eicient code worked against
you. hat’s the nature of the game. What’s the big deal?

Our enemy has more to teach us.

Your web services are as stateless and lightweight as you can make
them. his means that a lot of what we’ve learned about PHP “secu-
rity in depth” simply does not apply. he principles remain, so that
means we need to ind diferent ways to achieve those objectives.

One principle is to protect data by keeping it server-side. Browser
cookies, for example, can be manipulated by an attacker. We would
normally use the PHP session for maintaining state, but we try not
to with the web services. You might cache non-sensitive informa-
tion (such as which ofers the user has already completed) in the
app and keep everything in your database.

On the main site, a given database query might be ive levels deep
in the code, with input parameters long since checked, sanitized,
and validated. When a web service makes a direct call to that same
function, it won’t be obvious what protections need to be in place.

here are a number of solutions to this “direct access” issue,
such as a “bridge” which centralizes the web service requests and
provides validation. hose details don’t matter here. What’s import-
ant is the attitude. We need to consider any such “hot path” a direct
path for the enemy.

In any event, we have two (or more) paths to the same functional-
ity. he main site has the functionality, and the web services expose
that same functionality. All of this happens naturally. It’s normal.
You already had a website, and you later expanded your reach by
creating the web services.

As we add a web services layer to expose that same functionality
to the app (or AJAX or whatever), we’re likely dealing with code that
came before our time. “It’s a trap!” (Admiral Ackbar, Return of the
Jedi) As you add eicient access to old code, you may be uninten-
tionally losing security that was “bolted on” years ago.

Observing HTTPS Traic
You should force all of your web services to use HTTPS proto-

col. hat means requests and responses are sent in encrypted form.
Incorrect HTTPS coniguration is a common vulnerability. Get
proof of your correct coniguration. See the OWASP SSL/TLS Cheat
Sheet4 for a good overview.

his should mean that even passwords can be sent in plain text
across HTTPS and be safe, right? Your enemy will show you other-
wise.

4 OWASP SSL/TLS Cheat Sheet: http://phpa.me/owasp-tlp

he problem is that your app is “out there” in the wild. Your
attacker can download and install your app just like anyone else.
he app can be decompiled. All copies downloaded are identical
(until you update with a new app version). he app can be installed
by the enemy on a test bed of their choice.

Free tools exist to capture and display encrypted web traic. I
use Fiddler by Telerik5 for my own web services development. It
allows me to see my own HTTPS app traic, decrypted and nicely
formatted.

his is one way your enemy can learn to precisely mimic your app.
You can’t distinguish a legitimate web service request, coming from
your app, from an attack, when not one byte is diferent.

Do you have security tokens? Of course! But your attacker can
probably harvest a live token from the current Fiddler session and
use it.

Learn from the Master
What does “learn from the enemy” mean for you? Bruce Lee,

possibly the greatest martial artist in living memory, stated, “Be like
water, my friend.” Water instantly adapts to its environment.

Bruce Lee, quoted in he Warrior Within by John Little6 describes
his own self-expression:

Jeet kune do is training and discipline toward the ultimate reali-
ty in combat. he ultimate reality is simple, direct, and free. A true
jeet kune do man never opposes force or gives way completely. He is
pliable as a spring and complements his opponent’s strength. He uses
his opponent’s technique to create his own. You should respond to any
circumstance without pre-arrangement; your action should be as fast
as a shadow adapting to a moving object.

Bruce’s son Brandon Lee explained in the same book,

[he master] always talks about teaching “jeet kune do concepts.” In
other words, teaching someone the concepts, a certain way of thinking
about the martial arts, as opposed to teaching them techniques. To me,
that kind of illustrates the diference between giving someone a ish
and teaching them how to ish. You could teach someone a certain
block, and then they have that certain block; or you can teach some-
one the concept behind such a block, and then you have given them
an entire area of thinking that they can grow and evolve in themselves.
hey can say: “Oh, I see—if that’s the concept, then you could prob-
ably also perform it this way or that way and still remain true to the
concept.”

In other words, one does not “do” web service security. here
is no particular way to establish as the “right” way. he right way
is whatever keeps your attacker at bay—for now. As your enemy
grows and matures, of course, so must you.

Looking Forward
In this part, Learn from the Enemy, we learned that we dare

not think of web service security the same as website security. he
enemy does not follow “the rules,” whatever they might be. We must
therefore directly learn from the enemy how to block the enemy.

5 Fiddler: http://www.telerik.com/iddler
6 he Warrior Within: http://www.amazon.com/dp/0809231948

phparch.com
http://phpa.me/owasp-tlp
http://www.telerik.com/fiddler
http://www.amazon.com/dp/0809231948

6 \ March 2016 \ www.phparch.com

Learn from the Enemy: Securing Your Web Services, Part One

Part Two, Security Architecture, teaches you to meet the enemy.
You’ve heard of Authentication and Authorization. We’ll show why
they do not work with web services. Our enemy has challenged us;
we’ll meet that challenge.

Part hree, Implementing Encryption, sounds simple. It is! he
trouble is that encryption is extremely diicult to get right. In fact
it’s a great way to grab news headlines when you get it spectacu-
larly wrong. We’ll give you a concrete place to begin. We’ll cover
randomness, and how to encrypt and decrypt a string.

Additional Reading
his article serves as an introduction to securing your web

services. For more advice and guidance, consult the sources collect-
ed below.

1. Survive he Deep End: PHP Security by Padraic Brady.
Excellent survey of what you need to know about PHP
security. his short online book is a good starting point.
http://phpsecurity.readthedocs.org/en/latest/

2. PHP Security Cheat Sheet by he Open Web Application Secu-
rity Project (OWASP). I include the OWASP page to point out
that you should be long past dealing with these basic website
security issues. But if you are new to PHP security, this is a
good reference. https://www.owasp.org/index.php/
PHP_Security_Cheat_Sheet

3. Web Service Security Cheat Sheet by OWASP. Check-
lists are valuable. Visit this cheat sheet from time to
time to ensure you still have the right things covered.
https://www.owasp.org/index.php/
Web_Service_Security_Cheat_Sheet

4. Information Security at Stack Exchange. I ind the Informa-
tion Security folks to be friendly, helpful, authoritative, and
thorough. Learn to ask questions correctly and you’ll be
delighted with the responses. Don’t be shy, but show that
you’ve thought things through before typing out the question.
http://security.stackexchange.com

5. How to Hack a Paysite: What the Good Guys Need to
Know by Ed Barnard. his article series is old, but my
exploration of attitude and motivation remains relevant.
http://otscripts.com/how-to-hack-a-paysite-articles/

6. he Art of War: Complete Text and Commentaries by
Sun Tzu, translated by homas Cleary. Various Twit-
ter accounts quote this two-thousand-year-old classic,
including @battlemachinne. One line at a time, this
can help you retain that all-important security attitude.
http://www.amazon.com/gp/product/1590300548

7. hreat Modeling: Designing for Security by Adam
Shostack. his is the “big picture” look at formal-
ly anticipating security threats to your sotware. It’s
a tough row to hoe. But if you don’t, who will?

http://www.amazon.com/gp/product/1118809998

8. Web Security: A WhiteHat Perspective, by Hanqing Wu and Liz
Zhao. his one is tough to read but worth the energy expend-
ed. I believe there were two editions of the book published,
one in Chinese and one in English. A former hacker himself,
the author brings a useful perspective and solid information.
http://www.amazon.com/gp/product/1466592613

9. Security Engineering: A Guide to Building Dependable
Distributed Systems, 2nd Edition, by Ross J. Anderson.
his thousand-page monster won’t be read in one sitting.
Like hreat Modeling, this “big picture” book will give
you perspective and strategies you won’t ind elsewhere.
http://www.amazon.com/gp/product/0470068523

10. Cryptography Engineering: Design Principles and
Practical Applications by Niels Ferguson, Bruce Schneier,
Tadayoshi Kohno. I saved the best for last. If you’re planning
to write security-related code, read this book irst. It’s a good
and surprisingly fast read. You’ll come away with a far better
understanding of how things hold together and why.
http://www.amazon.com/gp/product/0470474246

 Ed Barnard has been programming comput-
ers since keypunches were in common use. He’s
been interested in codes and secret writing, not
to mention having built a binary adder, since
grade school. hese days he does PHP and
MySQL for InboxDollars.com. He believes sot-
ware cratsmanship is as much about sharing
your experience with others, as it is about gain-
ing the experience yourself. he surest route to
thorough knowledge of a subject is to teach it.
@ewbarnard

Control your destiny

Sick of
shared
hosting?

phparch.com
http://phpsecurity.readthedocs.org/en/latest/
https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
https://www.owasp.org/index.php/Web_Service_Security_Cheat_Sheet
https://www.owasp.org/index.php/Web_Service_Security_Cheat_Sheet
http://security.stackexchange.com
http://otscripts.com/how-to-hack-a-paysite-articles/
http://www.amazon.com/gp/product/1590300548
http://www.amazon.com/gp/product/1118809998
http://www.amazon.com/gp/product/1466592613
http://www.amazon.com/gp/product/0470068523
http://www.amazon.com/gp/product/0470474246
http://twitter.com/ewbarnard
http://deis.com

magazine

books

conferences

training

www.phparch.com

Keep your skills current and

stay on top of the latest PHP

news and best practices by

reading each new issue of

php[architect], jam-packed

with articles.
Learn more every month about

frameworks, security, ecommerce,

databases, scalability, migration, API

integration, devops, cloud services,

business development, content

management systems, and the PHP

community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles

like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2016-2,May

