
FREE Article!

 www.phparch.com \ June 2016 \ 2

Education Station

Easy Audio and Video

Manipulation with FFmpeg
Matthew Setter

Wouldn’t it be nice to be able to script the workflow, using something that takes the raw files
and does it all for us—preferably in PHP? This month, I’m going to show you how to do just
that, by using the php-ffmpeg library and the open-source package FFmpeg. We’ll be able to
script this functionality, so that we can do it repeatedly, whenever we need to, without relying
on applications like iTunes, Windows Media Player, or VLC.

What would the Internet be without audio and video? Likely, it
would be a medium that never took of or became an integral part
of everyday life. And it’s not just the Internet where audio and video
are essential. What about the exploding world of podcasts? What
about online tutorials and screencasts, spectacularly realized in the
PHP world with Laracasts? What about creating compilation videos
of the recent holiday, or storing all our music in MP3 format?

Without audio and video, the modern world would be a much
sadder, quieter place than it is today. Sure, there is a range of
websites and services that allow us to convert or transcode a video
or audio ile across a range of formats. We can download and install
applications that can also extract slices of video or scale, rotate, and
merge them together.

If you’re anything like me, automating this process probably
sounds enticing. To put it in context, I regularly create online
training courses and produce two episodes a month of my podcast,
http://freethegeek.fm. I’ve used a range of sotware and services,
including Audacity1, and auphonic2, to perform all the post-pro-
cessing I need.

What is FFmpeg?
But irst, what is FFmpeg? Drawing directly from the project’s

website, FFmpeg3 is:

A complete cross-platform solution for recording, converting, and
streaming audio and video.

Going further, FFmpeg can decode, encode, transcode, mux,
demux, stream, ilter, and play almost any video or audio format in
existence. It’s available on all major platforms, including Mac OS X,
Microsot Windows, BSD, and Solaris.

hat’s a lot to take in if you’re new to working with audio and
video formats other than listening to or watching them. So here’s an
explanation of some the terms mentioned above:

• Transcode: Change a ile from one format to another, such as
converting an MP3 to a WAV ile.

• Mux (multiplex): Combines diferent types of data in a single
stream or ile.

• Demux (demultiplex): Split a video and audio into separate
iles.

1 Audacity: http://www.audacityteam.org
2 auphonic: https://auphonic.com
3 FFmpeg: https://fmpeg.org

• Stream: Listen to music or watch video in ‘real time’ on a
diferent device.

• Filter: Apply some form of processing to the ile. here are
three types of ilters: pre, post, and intra. Pre-ilters run
before encoding. Post ilters run ater encoding. Intra ilters
run during encoding.

• Encode: Digitize video or audio information into diferent
video or audio standards from a source.

Installing FFmpeg
As the library we’ll be using is, in efect, a wrapper over FFmpeg,

we have to install the FFmpeg binaries irst. Here’s how to do that,
depending on whether you’re running Mac OSX, Linux, or Windows.
If you’re on Windows, then download the build for your version of
Windows from Zeranoe FFmpeg4. hey have options for 32- and
64-bit installations.

If you’re on Linux, there are builds available for download, or you
can use the package manager of your choice to install it. Look for a
package named fmpeg or similar.

If you’re on Mac OSX, you can download and install a build for
that as well, or use one of the package managers, such as MacPorts5
and Homebrew6, to do it for you.

Installing the Library
With the binaries installed, the next thing to do is to install

php-fmpeg. Like all modern PHP libraries, this can be done using
Composer. To do so, from the root of your project directory, run
the command:

composer require php-ffmpeg/php-ffmpeg`.

his will add php-fmpeg as a dependency to an existing project
or create a composer.json ile and add it as the irst dependency, if
this is a new project. Regardless, the library will be available shortly
ater that in the vendor directory.

4 Zeranoe FFmpeg: https://fmpeg.zeranoe.com/builds/
5 MacPorts: https://www.macports.org
6 Homebrew: http://brew.sh

phparch.com
http://freethegeek.fm
http://www.audacityteam.org
https://auphonic.com
https://ffmpeg.org
https://ffmpeg.zeranoe.com/builds/
https://www.macports.org
http://brew.sh

 www.phparch.com \ June 2016 \ 3

Easy Audio and Video Manipulation with FFmpeg

Education Station

Easy Audio and Video Manipulation with FFmpeg

Converting a Stereo Track to
Mono

Now that php-fmpeg is installed, let’s see how to convert a stereo
track to mono. If you’re not familiar with the diference between
stereo and mono, when you’re listening to most podcasts you’re
listening to audio in mono. When you’re listening to a recording of
a symphony orchestra, you’re listening in stereo.

he diference is that in mono, the audio plays the same thing at
the same time across all speakers, whether there is one or several
speakers. In stereo, diferent audio tracks can be heard at diferent
times from diferent speakers. For example, you might hear a guitar
solo on your let side, and the lead singer on your right.

Let’s say I’ve accidentally recorded my podcast in stereo format,
and I want to change it to mono. his can be important as there will
be extra audio information in the stereo ile, making it signiicantly
larger than it needs to be. Let’s see how to convert it, and reduce
the ile size.

<?php

require_once('vendor/autoload.php');

$ffmpeg = FFmpeg\FFmpeg::create();

First of, we need to include Composer’s autoloader and create a
new FFmpeg class instance. here’s no requirement to diferentiate
between audio and video on instantiation—the FFMpeg class can
handle both types of iles.

he static method will scan your system paths looking for the
required binaries. Your package manager may have put them in a
non-standard location, so if they’re not found, you can use one or
both of the following coniguration options to tell the library where
to ind them.

• fmpeg.binaries: the path to FFmpeg

• fprobe.binaries: the path to FFprobe

$audio = $ffmpeg->open('audio.mp3');
$format = new FFmpeg\Format\Audio\Wav();
$format->on('progress', function ($audio, $format, $percentage) {
 printf("%s%% transcoded\n", $percentage);
});

$format->setAudioChannels(1);

$audio->save($format, 'track.wav');

With an FFmpeg object instantiated, let’s convert the ile. In
the code above, I irst open a sample audio ile I created, called
audio.mp3. I then specify a format to convert the ile to, in this case,
WAV.

Out of the box, php-fmpeg supports AAC, FLAC, MP3,
OGG-Vorbis, and WAV. To see what formats your installation
supports, from the command line, run:

ffmpeg -protocols

hat way if an error occurs, you can more readily make sense of it
and install any extensions or codecs, as needed.

With the format object instantiated, I then add a listener on the
progress information provided by the format object. Speciically,
I’m listening to the progress event, by specifying the name of the
event (that is, progress) and a callback to handle the event.

I do this because I want to print out the progress information–—
it’s handy to keep track of how much progress has been made, and
gives an indication of how much more time is required. Much pref-
erable to watching a black screen with no indication.

Ater that, I set the audio channel to 1, which in efect creates
a mono audio track. Finally, I save the ile, passing in the $format
object and the ile name to save the new ile as track.wav. In Figure
1, you can see example output, showing the progress as transcoding
progresses

Reduce the Bit Rate
Now that we can transcode a ile to another format, what about

changing the bit rate? According to the BBC, bit rate7 is deined as:

… how many bits of data are processed every second. Bit rates are
usually measured in kilobits per/second (kbps).

he higher the bit rate, the greater the quality, and size, of the
audio ile. Conversely, the lower the bit rate, the lower the quality,
and the smaller the accompanying ile size. You can think of it a lot
like working with images for the web. How much quality do you
need? How high (or low) a level of quality is acceptable?

his is just as important for audio iles, especially given the fact
that not all countries have low-cost/high-data plans. And for some
of those that do, the infrastructure may not always support stream-
ing large iles at the rates we desire.

So to ensure that we consider a broad spectrum of users, we’re
now going to reduce the bit rate of the audio ile we used previous-
ly to 64Kbps, which is standard for podcasts. If you’re interested
in inding the right bit rate for your audio ile, check out this post
from Richard Farrar8. In general, lower bit rates are acceptable for
conversations and discussions, while high bit rates will make music
and performances sound richer.

To lower the bit rate, we only need to add one further call on the
$format object, which you can see below.

$format->setAudioChannels(1)->setAudioKiloBitrate(64);

7 BBC: Bitrate deinition: http://phpa.me/bbc-bit-rate
8 Richard Farrar:

http://www.richardfarrar.com/choosing-bit-rates-for-podcasts/

FIGURE 1php-ffmpeg transcoding output

phparch.com
http://phpa.me/bbc-bit-rate
http://www.richardfarrar.com/choosing-bit-rates-for-podcasts/

 www.phparch.com \ June 2016 \ 4

Easy Audio and Video Manipulation with FFmpeg

Education Station

Easy Audio and Video Manipulation with FFmpeg

he rest of the code remains the same. Now this won’t be a fair
comparison of ile sizes, as WAV iles are a lot larger than equivalent
MP3 iles.

So to give you an apples-to-apples comparison, I converted an
MP3 ile with a bit rate of 192 kbps to 64 kbps: the ile size dropped
from 86mb to 29mb. Not bad, considering that the two iles, to the
listener, would likely sound almost identical.

Extracting an Image from a Video
File

Now that we’ve played around with audio iles, let’s work with
some video iles. We’ll ease into it by extracting an image from a
video ile at an arbitrary point in its timeline.

here are several reasons you may be interested in doing this,
including having a thumbnail for the video that the user can see
before they start playback. Let’s say that’s what we’re doing. To
extract an image we only need the code below.

$video = $ffmpeg->open('video.mp4');
$frame = $video->frame(
 FFmpeg\Coordinate\TimeCode::fromSeconds(2)
);
$frame->save('image.jpg');

Here, as before, we irst open the ile. We then call the frame()
method, passing in a TimeCode object, which speciies the time at
which to extract the exerpt. Finally, we call $frame’s save method,
passing in the ilename to save the image as image.jpeg. Try this
with a video of your own, and pick an arbitrary point in the timeline
where you want to extract a frame.

Resizing a Video File
Now that we’ve extracted a frame, let’s do something slightly

more complex, and scale a video down to a smaller resolution. Let’s
say that we have a video site, something like Laracasts9, and we need
to create smaller versions of our video for a preview page.

Our original video, the one that will be viewed by users when
they’re watching the screencast, has a resolution of 1504 x 846, but
that the thumbnail video will have a resolution of 320 x 240. To do
that, we can use the code sample below.

$ffmpeg = FFmpeg\FFmpeg::create();
$video = $ffmpeg->open('video.mp4');
$video
 ->filters()
 ->resize(new FFmpeg\Coordinate\Dimension(320, 240))
 ->synchronize();
$video->save(new FFmpeg\Format\Video\X264(),
 'video-320x240.mp4');

Here, we’ve opened the ile, applied a resize ilter to it, specifying
the dimensions to resize the video to, and then saved it again, with
a name containing the dimensions of the ile.

Notice that we’ve also made a call to the synchronize() method.
While this is not necessary in this example, it’s worth mentioning,
because it ensures that there’s no lag between the video’s video and
audio content.

9 Laracasts: http://www.laracasts.com

Adding a Watermark to a Video
File

Continuing with the screencast analogy, let’s say that you want to
add a watermark to your videos so that it’s harder for people to rip
of your work and pass it of as their own.

To do that, you could add a watermark like the one in Figure 2,
likely at the bottom let or right of the video, showing your name or
your company’s name.

To do this, we can use the same code as before, replacing the call
to resize() with a call to watermark(), as you can see in the code
sample below.

$video->watermark('./watermark.png', [
 'position' => 'relative',
 'bottom' => 50,
 'right' => 50,
])

Here, we’ve speciied the location of the watermark ile, along
with the details of its placement. When we run the script again, the
video will now have a small watermark on it, which you can see in
Figure 3.

FIGURE 2A video watermark

FIGURE 3A watermarked video file

phparch.com
http://www.laracasts.com

 www.phparch.com \ June 2016 \ 5

Easy Audio and Video Manipulation with FFmpeg

Education Station

Easy Audio and Video Manipulation with FFmpeg

Transcoding a Video File to
Several Formats

Let’s inish up by seeing how to transcode our video to several
diferent ile formats. To do that, we only need to call video’s save()
method for each format that we want to save the ile to.

To each call to save(), we pass in a video format object and a ile-
name. Currently, php-fmpeg supports ive formats: OGG, WebM,
WMV, WMV3, and X264. Let’s take a look at how to save the ile to
OGG, WMV and WebM.

$video
 ->save(new FFmpeg\Format\Video\OGG(), 'video.ogg')
 ->save(new FFmpeg\Format\Video\WMV(), 'video.wmv')
 ->save(new FFmpeg\Format\Video\WebM(), 'video.webm');;

We’ve already seen this in action, in the earlier example, where we
resized the ile. But it never hurts to be explicit.

 Conclusion
hat’s your introduction to using the php-fmpeg library and

FFmpeg, for manipulating audio and video content. If you’re a
podcaster or screencaster like I am, then do yourself a favor and
read up on both FFmpeg and php-fmpeg to see how you can script
up various parts of your worklow, saving time and efort and
making your work much more consistent.

Matthew Setter is a sotware developer specializing in PHP, Zend
Framework, and JavaScript. He’s also the host of http://FreeheGeek.fm,
the podcast about the business of freelancing as a sotware developer
and technical writer, and editor of Master Zend Framework, dedicat-
ed to helping you become a Zend Framework master? Find out more
http://www.masterzendframework.com.

5 \ June 2016 \ www.phparch.com

Open source partner
solutions in Marketplace

Bring the open source
stack and tools you love

UPCOMING TRAINING

COURSES

Laravel from the Ground Up
starts June 1, 2016

Developing on Drupal
starts June 6, 2016

www.phparch.com/training

Get up and running fast with

PHP, Drupal, & Laravel!

phparch.com
http://FreeTheGeek.fm
http://www.masterzendframework.com
phparch.com
http://twitter.com/OpenAtMicrosoft
http://azure.com
http://www.phparch.com/training?utm_source=mag0616&utm_medium=pdf&utm_campaign=training

magazine

books

conferences

training

www.phparch.com

Keep your skills current and

stay on top of the latest PHP

news and best practices by

reading each new issue of

php[architect], jam-packed

with articles.
Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles

like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2016-2,June

