
PHP Application Hosting

harnessing
Magic

p
hp

[architect] m
ag

azine July 2
0

16
M

ag
ic

Volum
e 15

 Issue 7

www.phparch.com July 2016
VOLUME 15 - Issue 7

Community Corner:
Nacho Cheese

Leveling Up:
Simple is Better

Security Corner:
A
 er the Breach

Education Station:
Running Mailing Lists with MailChimp
and PHP

fi nally{}:
Ageism in the Development
Community (from Both Sides)

Im

ple
m

entin
g C

ry
pto

gra
phy

Rem
ovin

g th
e M

agic w
ith

 Funct
io

nal P
H

P

Refe
re

nce C
ountin

g : T
he P

DO
 C

ase
 S

tu
dy

RegEx is
 Your F

rie
nd

PH
P

ALSO INSIDE

FREE Article!

 www.phparch.com \ July 2016 \ 2

Education Station

Running Mailing Lists with
MailChimp and PHP
Matthew Setter

Despite how old email is—the first email was sent in 1971—and despite the popularity of
social media, reports repeatedly show that email is as prevalent as ever. Not only is it still
prevalent, but it’s far and away more profitable than social media ever was, or likely will ever
be. Mailing list services are nicely bundled up in slick web interfaces so that users are required
to do as little as possible. That’s OK for power users—but we’re developers! We like to work
with APIs, integrating them into our applications, or sometimes just being able to script up
repetitive tasks. Today I’m going to show you how to do that with my current favorite mailing
list service—MailChimp.

Given email’s popularity, it’s not surprising that there is a pleth-
ora of online services for managing email campaigns, including
such luminaries as MailChimp1, SendGrid2, and MailGun3. Each of
these services, as well as the others in the space, have a range of
options, including such features as lists, list segmentation, campaigns,
and automated emails. Some can even send emails at the same time
across multiple time zones—and this is just scratching the surface
of what’s on offer.

What is MailChimp?
I’ve been using MailChimp for several years. I started about

four years ago, after hunting around for a service that provided the
features I needed, yet at a price point that I could afford. MailChimp
did just that.

MailChimp offers all those features, along with customizable
email templates, a range of powerful reports, mobile integration,
merge tags, integration with WordPress, Facebook, and Eventbrite,
and more, all at a very competitive price. Unlike some of its compet-
itors, for the first 2,000 subscribers and up to 12,000 emails per
month, you don’t pay a cent.

After that, you can elect to start paying for other features, starting
at $10 per/month. Not a bad deal. I’ve enjoyed using the interface to
create campaigns for Master Zend Framework, the site I started to
share my knowledge of Zend Framework.

The UI makes it pretty simple to create lists, send email campaigns,
and run reports, but I’ve been wondering about automating the
process for a while. Instead of logging in and filling out the various
fields, testing, and scheduling campaigns, what about being able to
script it from the command line?

MailChimp has an API that offers a broad range of functionality.
This month I want to step you through some of the core functional-
ity and show you how to automate your email campaigns.

1	 MailChimp: http://mailchimp.com
2	 SendGrid: https://sendgrid.com
3	 MailGun: https://www.mailgun.com

Here’s what we’ll cover:
1.	 Create an account
2.	 Create an email list
3.	 Add several users to the list
4.	 Update a user’s details
5.	 Create and send an email campaign to our list
To make all this easier, I’m going to use a package I came across

recently: mailchimp-api4, by Drew McLellan. Mailchimp-api is
self-described as:

A super-simple, minimum abstraction MailChimp API v3 wrapper
in PHP.

I’ve been experimenting with the library for a little while now
and enjoy using it. There’s not a lot to remember, with just a few
method calls available. This might seem like a shortcoming. But
stick with me: you’ll see just how flexible the library is as a result.

The MailChimp API
Before we go too much further, let’s have a quick look at the API

documentation, so that you get a taste of what’s on offer. Navigate,
in your browser, to the API documentation overview5. There you’ll
see the details for each endpoint, covering:

•	 The endpoint regular expression
•	 The request methods that they accept
•	 A brief description of each one

4	 Mailchimp API: https://github.com/drewm/mailchimp-api
5	 Mailchimp API documentation overview:

http://phpa.me/mailchimp-api-overview

phparch.com
http://mailchimp.com
https://sendgrid.com
https://www.mailgun.com
https://github.com/drewm/mailchimp-api
http://phpa.me/mailchimp-api-overview

 www.phparch.com \ July 2016 \ 3

Running Mailing Lists with MailChimp and PHP

Education Station

Running Mailing Lists with MailChimp and PHP

You can see an example of the Lists
endpoint in Figure 1. It summarizes the
purpose of the endpoint and the available
methods and sub-resources. Then, as you
scroll down to each method, you get a
detailed description of the arguments that
each endpoint accepts, along with proper-
ties, if an argument accepts a complex type.
This format applies to all the endpoints
within the API.

Installation
Like all modern PHP libraries,

mailchimp-api can be installed using
Composer. To do so, from the root of your
project directory run the command:

composer require drewm/mailchimp-api

If you have an existing project, this
will add mailchimp-api as a dependen-
cy to your project; alternatively, create
a composer.json file and add it as the
first dependency if this is a new project.
Regardless of whether this is a new or
existing project, the library will be added
to the vendor/ directory.

Creating a MailChimp
Account

With the library installed, you now need a MailChimp account to
interact with the API. I’ll assume that you don’t already have one. If
you do, feel free to skip this section. That said, go to the MailChimp
signup page6 in your browser, which you can see in Figure 2, and
enter your email address, username, and password.

6	 MailChimp signup page: https://login.mailchimp.com/signup

After you’ve submitted the form, check your email, where you
should have received a confirmation email with a link to activate
your account. After clicking the link and activating your account,
log in7(https://login.mailchimp.com). You’ll see that the account
dashboard is pretty bare. You have no campaigns, templates, lists,
report data, or automation steps.

Retrieving Your MailChimp API
Key

With your account created, before you can interact with the API
you need to create an API key. To do this, click the drop-down in
the top right-hand corner, where you see your account image and
name, and under that, click Account.

On the page that you’re directed to, click on Extra ˅ and choose
API Keys. After the page refreshes (you should be at /account/api/),
you will see a button labeled Create a Key under the section Your
API keys. Click that and you’ll be redirected back to the account
page, where an API key will have been created, as you can see in
Figure 3. You can click in the cell in the Label column to give your
API key a descriptive name. This also allows you to use different
keys with different applications, which comes in handy if you ever
need to revoke access to one.

7	 Mailchimp log in

FIGURE 2MailChimp signup page

FIGURE 3MailChimp New API Key

FIGURE 1The MailChimp API documentation

phparch.com
https://login.mailchimp.com/signup

 www.phparch.com \ July 2016 \ 4

Running Mailing Lists with MailChimp and PHP

Education Station

Running Mailing Lists with MailChimp and PHP

Copy the key in the API key column into the following code
below, replacing your-api-key. This code will form the basis for all
the code we’ll be running in the code examples.

<?php

require_once ('vendor/autoload.php');

use \DrewM\MailChimp\MailChimp;

$MailChimp = new MailChimp('your-api-key');

Creating a MailChimp Mailing List
To create a list, we will send a POST request to the /lists endpoint.

You can see in the documentation8 that there are a number of
options available, including: name, contact, permission_reminder,
campaign_defaults, and email_type_option.

Using just these options, the code in Listing 1 provides:
•	 A name for the list
•	 The list’s contact details
•	 Campaign defaults, so that I don’t have to provide them every

time I create an email campaign
•	 A reminder about where the users signed up to the list, so that

they don’t think it’s spam
•	 That the list doesn’t support choosing the email format

8	 Mailchimp lists API: http://phpa.me/mailchimp-lists-api

All being well, you’ll see a response similar to the output below,
which I’ve truncated for readability:

Array
(
 [id] => 73feddfd00
 [name] => First List
 [contact] => Array
 (
 [company] => My Fun Company
 [address1] => 123 Anywhere Street
 [address2] =>
 [city] => Berlin
 [state] => Berlin
 [zip] => 12203
 [country] => US
 [phone] =>
)

 [permission_reminder] => true
 [use_archive_bar] => 1
 [campaign_defaults] => Array
 (
 [from_name] => Matthew Setter
 [from_email] => matthew@matthewsetter.com
 [subject] => Hey People...!
 [language] => en
)

 [notify_on_subscribe] =>
 [notify_on_unsubscribe] =>
 [date_created] => 2016-05-09T14:56:20+00:00

)

LISTING 1
01. <?php
02. require_once ('vendor/autoload.php');
03. use \DrewM\MailChimp\MailChimp;
04.
05. $MailChimp = new MailChimp('your-api-key');
06.
07. $result = $MailChimp->post(
08. "lists",
09. [
10. 'name' => 'First List',
11. 'contact' => [
12. 'company' => 'My Fun Company',
13. 'address1' => '123 Anywhere Street',
14. 'city' => 'Berlin',
15. 'state' => 'Berlin',
16. 'zip' => '12203',
17. 'country' => 'Germany'
18.],
19. 'permission_reminder' => 'true',
20. 'campaign_defaults' => [
21. 'from_name' => 'Matthew Setter',
22. 'from_email' => 'matthew@example.com',
23. 'subject' => 'Hey People...!',
24. 'language' => 'en'
25.],
26. 'email_type_option' => false,
27.]);
28.
29. print_r($result);

Open source partner
solutions in Marketplace

Bring the open source
stack and tools you love

phparch.com
http://phpa.me/mailchimp-lists-api

 www.phparch.com \ July 2016 \ 5

Running Mailing Lists with MailChimp and PHP

Education Station

Running Mailing Lists with MailChimp and PHP

Add Users to the Mailing List
Now that we have a mailing list, we need to add some subscribers

to the list. Given the modern practice of double opt in 9, this might
seem a strange thing to do—that you can add someone directly to
your list.

MailChimp gives you the option to do so. Before we jump into
the code sample, please make sure you treat this option with the due
care it deserves. Otherwise, you might end up with some disgrun-
tled users. With that said, here’s how to add a user:

$result = $MailChimp->post("lists/bee5472aef/members", [
 'email_address' => 'matthew@matthewsetter.com',
 'email_type' => 'html',
 'status' => 'subscribed',
 'vip' => true
]);

print_r($result);

As the list’s endpoint documentation shows, we make a post
request to the list’s endpoint, specifying the list id, and the suffix
of /members. For the request options, we’re going to pass a few of
the available options, mainly just the most pertinent: email_address,
email_type, status, and vip. This will result in a new VIP list member,
who will only receive HTML emails.

Update Users Details
Now, let’s imagine that we only had some basic user information,

which we provided in the last section, but since then they’ve provid-
ed us with their first and last names. So we’re going to add them to
the list. To do that, we need to make a patch request and update
their details.

As you’d likely expect, the PATCH endpoint is only slightly different
from the POST endpoint, with an MD5 hash of the member’s email
address being appended to the end (see an example below).

$url = sprintf("lists/bee5472aef/members/%s",
 md5('matthew@matthewsetter.com'));
$result = $MailChimp->patch($url, [
 'merge_fields' => ['FNAME'=>'Matthew', 'LNAME'=>'Setter']
]);

Here, I’ve used PHP’s md5 function to create a hash of the email
address. If we wanted to, we could also include the hash direct-
ly, after retrieving it from the list of members’ details, retrieved
through a get request as follows

$result = $MailChimp->get("lists/bee5472aef/members");

Note that in the patch request we only provided the information
that we wanted to change. The API is constructed in such a way that
patch and PUT requests require only the information to be added
or changed. All other information will be left intact if not supplied.

Create and Send an Email
Campaign

Now that we have a list with a member, it’s time to create a
campaign and send an email to it. This is going to take a little bit of
work—but not too much. First, we create the campaign, by making
a post request to the campaign endpoint (see Listing 2).

Here, I’ve specified that it will be a normal campaign, and will be
sent to the mailing list we created earlier. After that, I specified some

9	 Double opt-in process: http://phpa.me/mc-double-optin

settings for the campaign, including the subject line, title, who the
email will be from, and a reply to address. The subject line and title
are not that compelling. In a real campaign, I’d try to make them
something that you’d want to open and read. Finally, I’ve specified
some tracking options.

Whenever I send out a campaign to my lists, I’m always keen to
know how many people opened them, and how many took action
on the links in the email. Given that, I’ve set opens and html_clicks
to true. I’m also interested in some Google Analytics data, and have
provided a unique code for that as well.

Create the Email Body
I find this a little strange, but then perhaps it’s logical that you

have to create the campaign and the campaign email separately. But
no matter. To create the body, we have to send a put request to the
campaign content endpoint, as in Listing 3.

LISTING 3
01. <?php
02. require_once ('vendor/autoload.php');
03. use \DrewM\MailChimp\MailChimp;
04.
05. $MailChimp = new MailChimp('your-api-key');
06.
07. $html = <<<EOF
08. <html>
09. <head>
10. <title>HTML Body</title>
11. </head>
12. <body>
13. Here is the body of the email
14. </body>
15. </html>
16. EOF;
17.
18. $result = $MailChimp->put("campaigns/6f23245f05/content", [
19. 'plain_text' => 'Here is the body of the email',
20. 'html' => $html
21.]);

LISTING 2
01. <?php
02. require_once ('vendor/autoload.php');
03. use \DrewM\MailChimp\MailChimp;
04.
05. $MailChimp = new MailChimp('your-api-key');
06.
07. $result = $MailChimp->post("campaigns", [
08. 'type' => 'regular',
09. 'recipients' => [
10. 'list_id' => 'bee5472aef'
11.],
12. 'settings' => [
13. 'subject_line' => 'Here is my subject line',
14. 'title' => 'here is my title',
15. 'from_name' => 'Matthew Setter',
16. 'reply_to' => 'matthew@matthewsetter.com',
17.],
18. 'tracking' => [
19. 'opens' => true,
20. 'html_clicks' => true,
21. 'google_analytics' => 'regular_campaign_09052016',
22.]
23.]);

phparch.com
http://phpa.me/mc-double-optin

 www.phparch.com \ July 2016 \ 6

Running Mailing Lists with MailChimp and PHP

Education Station

Running Mailing Lists with MailChimp and PHP

Here, we’ve specified a plain text and HTML body for the email.
The content isn’t that imaginative, but it’s enough for a simple email.
To retrieve the id of the campaign, we can make a get request to the
campaign’s endpoint as follows.

$result = $MailChimp->get("campaigns");

Test the Email
Now that the campaign is created and has a body, it’s time to

send a test email so that we can verify that the email will render
as we expect. To do that, we send a post request to the action’s test
endpoint, as follows.

$result = $MailChimp->post(
 "campaigns/6f23245f05/actions/test", [
 'test_emails' => [
 'matthew@matthewsetter.com'
],
 'send_type' => 'html'
]);

Here, we’ve specified the campaign id in the endpoint, then for
the request data, specified who we’re going to send the test email to,
and the send type. As we have both a plain text and HTML body, it
would make sense to make two requests, testing both formats.

But for a simple example, making one request for the HTML
format is enough. After a few minutes, the test email, which you
can see in Figure 4, arrived. It’s not all that interesting. But it does
the job.

If you’re interested in creating more imaginative and creative
emails, check out the API documentation on email templates10.

10	Mailchimp email templates: http://phpa.me/mc-templates

Conclusion
That’s how to use Drew McLellan’s mailchimp-api library to inter-

act with MailChimp’s API. It might seem strange, at first, to use
such a simple library to work with such a full-featured API. But, not
having to remember a large amount of functionality, you will find
working with the API surprisingly simple and remarkably flexible.
I’ve enjoyed using it, as well as exploring the API further. I hope
that you take the time to explore it and make the most of it as well.

 Matthew Setter is a software developer specializing in PHP, Zend
Framework, and JavaScript. He’s also the host of http://FreeTheGeek.fm,
the podcast about the business of freelancing as a software developer
and technical writer, and editor of Master Zend Framework, dedicat-
ed to helping you become a Zend Framework master? Find out more
http://www.masterzendframework.com.

FIGURE 4A test email

Oswald De Riemaecker

Frédéric Dewinne

BizDevOps for PHP

and

Laura Thomson

Operationalize Your Code:
How To Be BFFs
With The
Ops Team

Joe Ferguson

Puppets, Chefs, and Ansibles –
Making Sense of
the Provisioning
Circus

Graham
Christensen

Immutable Servers: Safe
Deployment,
Every Time

Chris
Tankersley

Deploying Containers with
Rancher

Ops for Devs
online or video download

9:00 AM - 3:00 PM CDT
July 29, 2016

Register at daycamp4developers.com

Want more articles
like this one?

phparch.com
http://phpa.me/mc-templates
http://FreeTheGeek.fm
http://www.masterzendframework.com
http://daycamp4developers.com

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.
Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2016-2,July

