
D
ocker for D

evelopers
Chris Tankersley

Chris Tankersley is a PHP Developer living in Northwest Ohio.
He has been developing PHP applications for more than ten
years, across a wide variety of frameworks and business needs.
In addition to programming, Chris manages hosting and server
deployments for developers that are looking for more than just
what basic hosting provides. He currently spends most of his
time working with Sculpin, Zend Framework 2, and Drupal.

Chris is also an author of many PHP articles for php[architect],
as well as a speaker, traveling around the US giving talks
at many PHP-based conferences. Chris also helped found
the Northwest Ohio PHP User Group. Chris is the PHP FIG
representative for Sculpin, a static site generator written in PHP,
and the lead developer for the PHP Mentoring website.

Docker For Developers is designed for
developers who are looking at Docker as a
replacement for development environments
like virtualization, or devops people who
want to see how to take an existing applica-
tion and integrate Docker into that work-
�low. This book covers not only how to work
with Docker, but how to make Docker work
with your application.
You will learn how to work with containers, what
they are, and how they can help you as a developer.

You will learn how Docker can make it easier to
build, test, and deploy distributed applications. By
running Docker and separating out the different
concerns of your application you will have a more
robust, scalable application.

You will learn how to use Docker to deploy your
application and make it a part of your deployment
strategy, helping not only ensure your environments
are the same but also making it easier to package
and deliver.

www.phparch.com

Chris TankersleyChris Tankersley

Docker for Developers
by

Chris Tankersley

Sam
ple

Docker for Devs III

 Preface VII
Assumptions VII
Style Conventions VIII

Chapter 1. Containers 1
A Basic Container 2
Beyond Basic Containers 3
Along Comes Docker 3
Why We Should Care as Developers 4

Chapter 2. Getting Started 7
Installing Docker 8
Running Our First Container 14
How Containers Work 15

Table of
Contents

Sam
ple

Docker for DevsIV

 Table of Contents

Chapter 3. Working With Containers 17
Images 17
Controlling Containers 18
Container Data 20
Networking 23

Chapter 4. Containerizing Your Application 27
Getting PHP to Run 28
Getting a Database 28
Linking PHP to the MySQL Server 29
Getting a Web Server 30
Testing the application 30
Thinking About Architecture 36

Chapter 5. Creating Custom Containers 37
Dockerfiles 38
Building a Custom Image 42

Chapter 6. Docker Tools 43
Docker Machine 43
Docker Swarm 45
Docker Compose 48

Chapter 7. Command Cheatsheets 51
Images 51
Containers 51
docker-machine 52
docker-compose 52

Sam
ple

Docker for Devs 7

Chapter

2
Getting Started

Before we begin using Docker, we are going to need to install it. There will be a few caveats
that we are going to discuss as we go through the installation because, unless you are on Linux,
we’re going to need some extra software to utilize Docker. This will create some extra issues
down the road, but rest assured I’ll keep you abreast of the more disasterous pitfalls that you may
encounter, or various issues that might arise on non-Linux systems.

The installation is normally fairly easy no matter what OS you are going to use, so let’s get
cracking. We’re going to install Docker 1.6. I’ll go over some basic installation, but you can
always refer to https://docs.docker.com/installation/ for anything special or other Operating
Systems if you aren’t using Windows, OSX, or Ubuntu.

Throughout this book, I’m going to be using Ubuntu for all of the examples because it not only
gives us a full operating system to work with as a host, but it’s also very easy to set up. There are
smaller Linux distributions that are designed for running Docker, but we are more worried about
development at this stage. Since we’re using containers it doesn’t really matter what the host OS
is.

If you are running Windows or OSX I would also highly recommend setting up an Ubuntu
virtual machine instead of using the installation instructions later in this chaper for those
operating systems. The reason for this is because on non-Linux systems we will need to utilize a
virtual machine to provide a way for our Docker containers, which rely on Linux subsystems, to
function. OSX and Windows have a tool called Docker Toolbox which will set all of this up for
you however. It is more seamless than the older boot2docker system, which was a third-party

Sam
ple

https://docs.docker.com/installation/

Docker for Devs8

Getting Started

system that set up a VM and provided commands for working with the virtual machines. Docker
Toolbox installation is detailed below.

Installing Docker
Ubuntu

Since Ubuntu ships with Long Term Release releases, I would recommend installing Ubuntu
14.04 and using that. The following instructions should work just fine for 14.10 or 15.04 as well.
Ubuntu does have Docker in it’s repositories but it is generally out of date pretty quickly so
we’re going to use an apt repository from Docker that will keep us up-to-date. Head on over to
http://www.ubuntu.com/download/server and download the 14.04 LTS Server ISO and install it
like normal. If you’d like a GUI, grab the desktop version. Either one will work. I’ll be using the
Desktop version with the intent to deploy to Ubuntu 14.04 Server.

If you’ve never installed Ubuntu before, Ubuntu provides a
quick tutorial on what to do. Server instructions can be found at
http://www.ubuntu.com/download/server/install-ubuntu-server and Desktop instructions can be
found at http://www.ubuntu.com/download/desktop/install-ubuntu-desktop.

There’s a few commands we can run to set up the Docker repository. Open up a terminal and
install Docker:
$ sudo -i
$ wget -qO- https://get.docker.com/ | sh
$ usermod -a -G docker [username]
$ exit
$ sg docker

Line 1 switches us to the root user to make things easier. Lines 2 runs a script that adds the
repository to Ubuntu, updates apt, and install Docker for us. Line 3 sets up your user to use
Docker so that we do not have to be root all of the time, so replace [username] with your
actual user you will use.

We can make sure that the Docker engine is working by running docker -v to see what
version we are at:
$ docker -v
Docker version 1.9.0, build 76d6bc9

To make sure that the container system is working, we can run a small contaier.
$ docker run --rm hello-world

Ubuntu is all set up!

Windows 10 with Hyper-V
In 2016 Docker formally released a beta of Docker that runs on Windows, if your version of

Windows includes Hyper-V. This includes Windows 10 Professional, Enterprise, and Educa-
tion. If you have Home, you will need to upgrade to Windows 10 Professional to be able to use
Hyper-V.

Sam
ple

http://www.ubuntu.com/download/server
http://www.ubuntu.com/download/server/install-ubuntu-server
http://www.ubuntu.com/download/desktop/install-ubuntu-desktop

Installing Docker

Docker for Devs 9

Head on over to the
Docker Products[1] and
download the package
for Windows. The
Docker Beta for includes
Docker Engine, Compose,
Machine, and Swarm all
ready to be installed, and
the installer will also
enable Hyper-V.

Launch the Installer.
Accept the install agree-
ment and let Docker install.
Once the installer is done,
make sure the ‘Launch
Docker’ option is selected
and finish the installation.
That’s it! See Figure 2-1.

Docker will start itself
up. If Hyper-V is not
installed, it will prompt
you to install Hyper-V and
then restart the PC (Figure
2-2). This may take a few
additional moments, and
your PC may restart a few
times.

Once that is all finished
you will have a ‘Docker
for Windows’ icon on your
desktop, and a Docker icon
in your notification tray. As long as it is not red, you should be able to power up a Powershell
window and run docker -v to make sure everything is working.
$ docker -v
Docker version 1.12.0-rc2, build 906eacd, experimental

[1] Docker Products: https://www.docker.com/products/docker#windows

FIGURE 2-1

FIGURE 2-2

Sam
ple

https://www.docker.com/products/docker#windows

Docker for Devs10

Getting Started

Out of Memory Issues
On my test laptop, which has 4GB of RAM, I had to lower the VM memory usage all the way

down to 1024 MB before it would run. I am not 100% sure why exactly, as I had more than 2 GB
of available RAM at startup. If you get this error, right-click on the Docker icon in your notifica-
tion tray, select ‘Settings’, and then ‘Advanced.’ Lower the Memory slider until you are able to
start Docker.

Windows 7/8/8.1
Docker and Microsoft have

released a version of Docker
that runs under Hyper-V, but
only for users of Windows 10
Professional or higher. For
users of older versions, or lower
versions of Windows 10, you
will still need to download the
Docker Toolbox[2], which will
set everything up for us. The
Toolbox includes the Docker
client, Docker Machine, Docker
Compose, Kitematic, and Virtu-
alBox. It does not come with
Docker Swarm.

Start up the installer. When
you get to Figure 2-3 you can
install VirtualBox and git if
needed. I’ve already got them installed so I’ll be skipping them but feel free to select those if
needed. You should be good with the rest of the default options that the installer provides.

Since this changes your PATH, you will probably want to reboot Windows once it
is all finished.

Once everything is all finished, there will be two new icons on your
desktop or in your Start menu. Open up “Docker Quickstart Terminal.”
At this time Powershell and CMD support are somewhat lacking, so this
terminal will be the best way to work with Docker. Once the terminal is up,
run docker -v to see if you get a version number back.
$ docker -v
Docker version 1.9.0, build 76d6bc9

[2] Docker Toolbox: https://www.docker.com/products/docker#windows

FIGURE 2-3

FIGURE 2-4Sam
ple

https://www.docker.com/products/docker#windows

A

Docker for Devs 53

Index
A

Alphine Linux, 4
Amazon EC2, 44
Ansible, 30
Apache, 4, 19, 36
application
 complicated, 22
 containers, 49
 demo, 28
 foreground, 40
 full-stack, 48
 real, 32
 test, 30

B
base boxes, 17
Basic chroot, 3
Boot2Docker
 running, 47
 system, 7
BSD Jails, 3

C
CentOS images, 15, 17
chroot, 2–3, 14
client, 2, 4
 command-line, 4
 docker-swarm, 47
CMD, 38–41
 default, 41
 support, 10
commands

 adduser, 14
 eval, 44
 execute, 15
 init, 33
 migrate, 33
 new, 38
 normal, 14
 ps, 15
 volume, 20
composer, 28, 36–37, 41
configuration, 24–25, 30, 33, 49
 easy-to-deploy, 48
 management, 4, 30
 single file, 48
 special, 36
containers
 5.6-fpm, 28
 busybox, 22
 composer/composer, 41
 custom, 31, 36–38, 40, 42
 database, 29
 deploy, 38
 intermediate, 42
 IP address, 41
 linking, 25
 named, 24
 new, 15, 48
 php-fpm, 41
 single, 15, 27, 36
 stopped, 19–20
 testphp, 29
 total, 49

Sam
ple

Docker for Devs54

Index

D
daemon, 39
 mode, 19
data, sharing, 23
database, 23, 27–29, 32, 36, 48
 config, 29
 engines, 36
 migrations, 32–33
 servers, 22, 32, 36–37
data volumes, 20–23, 29, 37
 existing, 49
 normal, 20
 persistant, 22
Debian, 39
default.conf, 24
dependencies, 28, 46
deployments, 32, 37, 45
Digital Ocean, 44
docker
 client, 4
 command line interface(CLI), 11–12, 21
 commands, 48
 compose, 4, 10, 48–49
 default, 19
 installed, 43
 ps, 19, 22, 24–25, 47, 51
 running, 7–8, 13
 virtual machine, 24
 winpty, 11
docker4devs, 23
docker-compose, 49–50, 52
Dockerfile, 18, 38–42, 49
 sample, 40
Docker Machine, 4, 10, 43–45
 new, 52

Docker Quickstart Terminal, 10, 13
Docker Registry, 18
Docker Toolbox, 7, 21
 installation, 8
Docker Tools, 43–44, 46, 48, 50
driver, 11, 44, 52
 digitalocean, 44
 virtualbox, 13

E
ENTRYPOINT, 38, 41
environments, 1, 13, 33, 48

F
files
 docker-compose.yml, 48–49
 etc/hosts, 49
 local, 40
 log, 42
 phinx.yml, 33
 remote, 40
 single, 30
FreeBSD, 3

G
GUI, 8

H
host
 computer, 20
 file system, 21
 remote, 44
HyperV, 44

Sam
ple

I

Docker for Devs 55

I
IBM, 3
images
 available, 17–18
 base, 15, 18, 38–39
 composer, 28
 custom, 31–32, 39, 42
 download, 45
 existing, 39
 generated, 40
 pre-built, 14
 single, 17
 stock, 27
 swarm, 45
installation, 4, 7, 12
 basic, 7, 14
 normal Ubuntu, 14
IP address, 24–26, 30, 47
 external, 47
 new, 24

K
Kitematic, 10–11, 21
KVM, 3

L
layers, 18, 21–23, 40, 42
 multiple, 38
Linux, 2–3, 7
 containers, 3
 distributions, 7
 kernel, 3, 15
LXC, 3

M
machine
 multiple, 1, 45
 new, 44
 pre-configured, 43
 provisioning, 43
 running, 52
 single, 45
 stopped, 52
Microsoft, Azure, 44
migration scripts, 33
mounting directories, 13
multiple processes, running, 36
MySQL, 29, 33, 48–49
 command line client, 29
 container, 37
 image, 22
 layer, 42
 PDO extensions, 32

N
name, 19
 random, 19
 specific, 49
network
 connections, 11
 internal, 16
nginx, 19, 24–25, 30–31, 36–37, 39–40, 42,

47–49
 configuration, 24, 30, 49
 image, 17, 42
 package, 39
nginx container, 24–26, 30, 32, 36, 49
 generic, 42
 new, 32
non-Linux systems, 7

Sam
ple

Docker for Devs56

Index

O
OpenVZ, 3
orchestrate, 4
orchestration system, 50
OSX, 2, 7, 12, 20, 28

P
Parrallels, 3
Persisting Data, 21
Phinx, 32–33
PHP
 container, 23–25, 28–29, 31, 36
 extensions, 31
 image, 18, 31
 multiple versions, 4–5
 and nginx containers, 32
 PDO extension, 32
 running, 37
port
 exposed, 24–26, 41
 external, 47
 forwarding, 16
 map, 26
Powershell, 11, 21
processes
 containerizing, 5
 php-fpm, 24
 separate, 2
production environment, 21, 30
Puppet, 4, 30

Q
Quickstart, 11
 Terminal, 13, 21

R
registry, 51
 private, 18
repository, 8, 18, 27, 42
 apt, 8

S
server, 4, 8, 24, 30
single-process-per-container, 27
Solaris, 3
swarm, 45
 master, 45–46
 nodes, 50

T
tar files, 40

U
ubuntu
 image, 15
 installing, 8

V
Vagrant, 1, 3–4, 17, 27
Virtualbox, 1, 10–11, 44–47
virtual machines
 running, 2
 single, 27
 traditional, 16
Virtuozzo, 3
VMWare, 44
 Workstation, 1
VOLUME instruction, 42
volumes
 cross-host, 50
 hosted, 28

Sam
ple

W

Docker for Devs 57

 host-mounted, 20
 link, 22
 shared, 21

W
Windows, 7–8, 12, 20–21, 24, 26, 28, 47
 Mounts, 21
 Powershell, 21
 users, 21, 44

Sam
ple

