
PHP Application Hosting

p
hp

[architect] m
ag

azine A
ug

ust 2
0

16
U

nleashing
 A

utom
ation

Volum
e 15

 Issue 8

www.phparch.com August 2016
VOLUME 15 - Issue 8

More Than Just an “OK” Dev

What’s Your Code Tolerance?

Connecting Your Charts to a MySQL
Database

Community Corner:
The Tangled Web We Weave

Security Corner:
The Hitchhiker’s Guide to
Authorization

fi nally{}:
We are in a Tech Recession

Unleashing
Automation

Deploying with Ansible

Using Etsy/Phan for Static Analysis

How We Automate With Slack

ALSO INSIDE
FREE Article!

 www.phparch.com \ August 2016 \ 2

Leveling Up

How We Automate With Slack
David Stockton

Like it or lump it, Slack has taken over as the corporate and community
communication tool of choice. User groups, companies, interest groups,
families, and friends use the tool to chat, share information, memes, and gifs,
coordinate meetings and more. As a tool for corporate communication, Slack has become
irreplaceable for many. And with its easy-to-use APIs, it’s also possible to use Slack to automate
common and tedious operations, as we’ll see in this issue.

What’s Slack?
For those of you who haven’t run into

Slack yet, it’s a communications platform
that is similar to IRC, but with some notable
improvements. First of all, there’s history, so
you can look back at previous conversations
even if you weren’t connected to the server
when the conversations took place. There
are, of course, workarounds and programs
that can archive IRC chat, but with Slack,
you don’t need to worry about it. This
history is limited to 10,000 messages unless
your Slack is a paid account, though. Slack
supports direct, person-to-person commu-
nication, channels for different topics, as
well as ad hoc group chats where you can
enter a private chat with a small group for
any purpose. You can easily search the
archives, it has excellent mobile apps, and
it’s easy to use and understand.

In short, it’s sort of a combination of
Instant Messaging with chat rooms, with
a splash of what email could be used for.
If that’s where it ended, it wouldn’t be
anything special. What really makes it
shine, though, are the integrations. In IRC,
you can add bots that listen to what people
say in the channel and react with posting
responses back in the channel. Your bot can
also receive or react to external events and
post messages into an IRC channel. Every-
thing an IRC bot does is essentially the same
as what a very attentive person logged into
the channel could do. With Slack, you can
incorporate bots as well, but there is also an
API and other ways to enhance what you’re
able to do.

Slack Integrations
Currently, I’m in 12 different Slack teams.

I have three related to my company, one for
my user group, one for user group leaders,
one with over 1,200 people who are devel-
opers in Denver, three for other companies,
one for family, one for a book, and one for
a specific PHP interest group. The team

I spend the most time in is the main one
for the company I work for and we have
quite a few integrations. Integrations allow
you to enhance the capabilities of the chat
in various ways. We have integrations
that add calculator, dictionary, thesaurus,
gif postings, lunch coordination, Twitter,
Pomodoro timers, IFTTT1, and more.

For the more serious business-y integra-
tions, we have a Bitbucket integration which
posts information about pull requests—
when they are posted, comments that are
added, when they are merged, and more.
We have an integration that can start a
Google Hangout session in a channel or
between two people who need to chat. From
Jenkins, we get messages when jobs start
and finish along with information about
whether builds were successful, how many
tests were run, and so on.

From JIRA we get information about new
stories and tickets, and updates to ticket
statuses. All this information is posted into
specific channels based on its relevance.
In some cases where there are a lot of pull
requests or jobs, we’ve created a side-chan-
nel specifically for the posts from Bitbucket,
JIRA, and Jenkins.

Up until now, everything I’ve mentioned
is available with just a few clicks. Many of
the integrations require only a single click
and you’ve added the functionality to your
Slack team. However, what I find more
interesting are custom integrations that can
help save time and make tedious tasks more
enjoyable. That’s what I want to discuss here.

Custom Slack
Integrations

When Slack came out, I spent some time
learning the API2 and making some fun,
silly and—sometimes—useful integrations.
Back then, you could trigger a message to be

1 IFTTT: https://ifttt.com
2 The Slack API: https://api.slack.com

sent to your own script in a couple of ways.
You could either tell Slack to send every
message in a single channel to your script, or
you could send messages in any channel(s)
that started with a particular trigger word to
your script. Your script could then process
the message and respond with messages of
its own or cause something to happen.

My first few integrations mirrored
several common IRC bot plugins. I built
integrations to simulate dice rolls when-
ever someone posted something like
slackbot: roll a d6 to a channel. I built
integrations to the JIRA API so that when
people mentioned JIRA tickets, the bot
would post the title, owner, priority, and
status in the channel so you wouldn’t have
to search JIRA to determine what the ticket
was about. I built a “karma” integration that
kept score for any person or phrase that was
posted preceded by “++”. It has become our
way of showing appreciation or respect for
someone posting a particularly insightful or
funny message.

Later on, Slack added a new feature
known as “slash commands.” These are
commands you can post in any channel or
chat that start with a forward slash. When
you register a slash command, Slack will
post a payload which includes the full
message, the user who sent it, the channel
it was in, and other metadata to whatever
endpoint you choose.

Webhooks
For a number of years, I’ve wanted a

server that was externally available on the
internet and had access to some of our inter-
nal servers—at the very least, our Jenkins
server. This is because all the services we use
will send what’s commonly referred to as

“webhooks” when certain interesting events
happen. Bitbucket will send a payload
when pull requests are created, updated,
or merged, or when comments are added,
and more. This allowed us to make actions

phparch.com
https://ifttt.com
https://api.slack.com

 www.phparch.com \ August 2016 \ 3

How We Automate With Slack

Leveling Up

occurring in Bitbucket and JIRA to cause
Jenkins builds to happen immediately. Until
we had this server, the best I could do was set
up polling, so that twenty-four hours a day,
seven days a week, every minute or two our
Jenkins server would ask Bitbucket if there
were any new pull requests or comments
across more than a hundred repositories
that the Jenkins server should know about.
To me, that seems incredibly inefficient. I’d
much rather have these services tell me
when something happens that I care about.
That’s significantly more efficient, and I get
to know about the relevant changes in a
much more timely manner.

Soon after getting this server in place,
we started setting up these webhooks for
several of our repositories. We used Zend
Expressive to inject the incoming webhooks
and output API calls into Jenkins to start
jobs. Of course, this meant creating new
endpoints for each type of work we wanted
to do. Since we were using a middleware
approach, each little bit of middleware gets
to do one job and then pass off the request to
the next piece, and so on. Once the middle-
ware we needed was built, it could be reused
to more quickly set up a route and configure
a middleware stack for the next webhooks
integration.

But still, it was not what I dreamt of, which
was something like an IFTTT interface
where I could drag and drop various events
and filters together with the consequences
of those events at will. I wanted to be able
to build any sort of integration I might need,
as long as I had the building blocks of the
middleware required to perform each task.
We’re not to that point yet, but we’re getting
there, and it’s going to be amazing. Also, I
want to be clear, while many of the ideas and
architecture described in this article came
from my brain, and an insignificant bit of
the code came from me, the vast majority
of the implementation of the services I’m
going to talk about were written by my
brother, Dann. He’s done an amazing job
getting this platform to where it currently is,
and in a very short amount of time. It would
not be what it is without him. So when I say

“we,” the credit really belongs to Dann.

Our First Slash
Command

One day a few months ago, we had a team
lunch. One of our remote developers need-
ed a feature branch created by QA. Now, this
team was not using git and their workflow
required the feature branch to be created
by QA, since developers did not have write

access to the repo. I watched as our QA strug-
gled with Bitbucket’s interface on his phone,
first trying to log in, then navigating to the
correct repo, and finally creating a branch.
It was at that lunch we decided to build a
Slack slash command that would create a
branch. As long as they had the Slack client,
creating a branch could be as simple as writ-
ing /branch <branch name> <repo>. That
command was finished later that day. Now
QA was able to create branches easily from
anywhere. We could even allow developers
to create their own branches, even though
they technically were not allowed to write
code to this “golden” repository.

What’s Next
Our other teams recently transitioned

from Mercurial to git, and along with
the version control changes, there were
some workflow changes we could inte-
grate because git made them possible. For
the most part, the teams using git follow a
rebase and squash workflow. When the code
is ready to be merged, it should be a single
commit branch off of the tip of the target
branch. This means if several developers
are working at the same time, they could
each have pull requests branched off the
same point in the source repository. When
either of these is merged, the other branch
is no longer on the tip of the target branch.
We like to make each branch “zero behind”
and “one ahead.” Merging in this way means
our source control history has a very clean

“saw-tooth” style with each “tooth” being
a single feature or bug fix, and the valleys
between the teeth being the merges.

On all of our teams, the QA group was
in charge of merging pull requests so they
could control their workload and ensure
that they’ve tested what they need to before
deployment. In order to keep this saw-tooth
pattern, it was necessary for QA to check the
pull requests and ensure that they had the
right number of approvals and nothing indi-
cating that the code should not be merged.
Then they had to change from the pull
request screen to the branches screen and
make sure the pull request was zero behind
and one ahead. In other words, there was a
lot of tedious checking needed to make sure
that code was merged in the “sawtooth” and
not the “foxtrot” pattern (shown in Figure1).
It was an error prone process, as well, so we
decided to automate it. We added onto our
webhooks platform to do automatic merges
when the right people have approved, the
build is passing, and the branch is “0 1”.
Now, whenever a pull request is approved
or updated, or a comment is deleted, the

computer will check these criteria and
merge automatically.

Sometimes, a pull request has all the
approvals it needs and the builds are pass-
ing, but it’s behind because something else
merged in front of it—or it wasn’t rebased

FIGURE 2Foxtrot pattern

HEAD

FIGURE 1Saw-tooth pattern

phparch.com

 www.phparch.com \ August 2016 \ 4

How We Automate With SlackHow We Automate With Slack

Leveling Up

to start when the pull request was creat-
ed. Using the Slack APIs, we could notify
the original developer that they needed to
rebase their code. We decided to go one
step further. So we built a Slack /rebase
command to allow a Slack chat message to
cause a rebase. We sent this command to
the developer along with some information
about what was happening. This allowed the
developer to copy/paste the command back
into Slack and our server would rebase on
the developer’s behalf, triggering a series of
builds and checks, and ultimately merging
the code if all the checks worked out.

Recently, Slack added a new bit of func-
tionality allowing integrations to send
messages with buttons. These buttons can
do whatever you want them to. So, as of this
afternoon, instead of having to copy/paste a
slash command, developers can simply click
a button and the server will rebase on their
behalf. They don’t need to stop and stash
to rebase or context switch at all. Clicking
the button makes it extremely simple, and
making it simple means it gets done.

More Integrations
Additionally, we’ve built integrations

allowing us to start Jenkins jobs from a Slack
slash command. Since our deployments are
controlled by a Jenkins job, it means certain
people can deploy code from anywhere
they have the internet without the need to
connect to a VPN. We’ve built a JIRA slash
command that does story lookups, but now
through middleware and good code instead
of the horrible, no good, very bad code of
my original integration with JIRA. As more
of the application was built, we decided that
many of the new integrations were simply
configuration. Automatically merging a
repo is simply a matter of knowing what
approval rules you want, potentially along
with the source and destination branches.
The middleware stack is the same as every
other automatic merge. The same sort of
thing goes for each Jenkins job that is kicked
off automatically due to an event like a pull
request creation, a comment added to the
effect of “test this please” or “WAI U NO
WORK?!?”, or a merge happening. This led
to the creation of two more slash commands
that are, in effect, slash commands to
create new integrations. We now have
an /auto_merge and an /auto_jenkins
command that build configuration for
our middleware stacks to automatically
merge or automatically kick off Jenkins
jobs. These can now be done completely in
Slack, requiring no code deploys or manu-
al configuration updates. At this point, the

application is entirely an API. There is no
UI (yet) for anything. Everything is done
through Slack or triggered by an application
webhook.

This means that under normal circum-
stances, a developer can write their code,
push up a pull request, and move on to their
next task. They will be notified if anything
needs to be done later, such as rebasing, or
fixing things if tests failed, but they don’t
need to remember to go back and look at
the code they completed. If they need to
rebase, they can click a button. No one is
held up waiting for it; there’s essentially no
context switching to rebase code, even if the
developer is working on a different feature.
Additionally, Jenkins jobs and deploys can
be kicked off with a simple message from
anywhere we have access to Slack.

Queuing
Fairly early on, we found that we could

not have our application do the work as a
direct response to the incoming request. The
reason for this is that typically, webhooks
require a quick, or relatively quick, response
or they assume an error happened. For Slack,
your application must respond in under 3
seconds. For Bitbucket, it has 10 seconds.
The reason for this is that those services are
sending out thousands of requests to their
customers at any given time. They don’t
want to have their servers bogged down
while an endpoint doesn’t respond.

Since several operations may take a while,
we found Queuing and “offline” asynchro-
nous processing were necessary in order to
respond quickly. This means for any given
request, we do some minimal validation to
ensure the request is legitimate and contains
the information necessary to perform the
action; then the request is shipped off as a
message to a RabbitMQ server. On the other
end of the queue is a long-running PHP job
which picks up the request and makes a new
HTTP request to the server again, but with a
minor modification allowing it to bypass the
queuing middleware without actually queu-
ing the job. With incoming Slack requests,
there’s an endpoint we
receive allowing us to
send messages related to
a slash command for up
to 30 minutes after the
initial slash command
was issued. Our response
back to Jenkins, JIRA,
and Bitbucket is essen-
tially responding, “Yup,
that looks like it’s a legit
message,” rather than a

response indicating that all the work was
done.

And Even More Better
Since Slack has an API and other services

have APIs that provide useful functionality,
the possibilities for integrations between
Slack and other services, webhooks and
Slack, or any other which way are virtually
endless. We’ve built slash commands allow-
ing us to explore Twilio logs, and look up
information via our internal applications’
own APIs. We also have a command which
I think is one of the coolest, even if it’s not
necessarily the most practical.

We have a /burrito command. I’ll say
it again because it’s awesome. We have a
/burrito command in Slack. This command
will literally cause an actual real-world
burrito to be created and prepared for pick
up. You can configure the burrito with your
favorite ingredients and place the order
without leaving the Slack interface. You can
even re-order things you’ve already ordered
in the past to save time. As far as silly level,
this one ranks up there, but it works, it’s
awesome, and it’s delicious.

A Brief Bit of
Middleware

If you’re not familiar with middleware,
here’s a super brief intro. A web request
comes in, and it is transformed or acted upon
little by little, through subsequent pieces of
middleware, until a response is returned.
That response passes back through each of
the pieces of middleware it went through on
the way in, until the response is sent back to
the caller. A completely generic middleware
could look like this pseudocode:

Of course, it’s not necessary to build
middleware that requires both a request and
a response, but in a general sense, middle-
ware will receive a request and ultimately
return a response. Middleware is going to
potentially modify the request or do some-
thing because of it,
then pass it on to the LISTING 1

01. function PseudoMiddleware(Request $request,
02. Response $response, $next) {
03. // do something with or modify request
04.
05. // send in to next middleware
06. $response = $next($request, $response);
07.
08. // modify the response on the way back out
09.
10. // return it
11. return $response;
12. }

phparch.com

 www.phparch.com \ August 2016 \ 5

Leveling Up

How We Automate With Slack

next middleware piece. The response that’s returned can be modi-
fied, or returned unchanged from the inner middleware. Because
each middleware is so simple, the names will likely be helpful in
understanding how some of our integrations work even without
seeing the internal code. Some complication arises when you start
dealing with errors and exceptions, but mostly that’s not important
right now. Here’s an example of one of the middleware stacks we use.
The extra levels of indentation indicate that a particular middleware
is made up of other middleware. Here’s our stack for automatically
merging a pull request based on approvals and what-not.

* ValidatorMiddleware
 * ValidateBody
 * ValidateKey
 * ValidateEvent
 * ValidateRepo
 * ValidateDestination
* QueueRequestMiddleware
* BitbucketMiddleware
 * BitbucketApprovalCheck
 * BitbucketSpecificUserApproval
 * BitbucketCommentCheck
 * GitFetchCommand
 * GitVerifyBranch
 * GitAheadBehindCommand
 * BitbucketBuildStatusCheck
 * BitbucketMerge
 * JenkinsBuildWithParameters

As you can likely surmise, the ValidatorMiddleware is all
about ensuring whatever comes in matches what we expect. The
ValidateKey middleware ensures that the request has a secret shared
key that the sender (Bitbucket) sends over. If any of these validators
doesn’t pass, the stack will return early and no further work will be
done. The QueueRequestMiddleware puts the request into the Rabbit-
MQ queue. On the other side, the whole process starts from the
top, meaning the validation will run again, but it’s quick. After that,
there’s a number of middlewares which ensure more specific data
requirements are in place. The BitbucketApprovalCheck ensures
that a pull request has the required number of approvals. The
BitbucketSpecificUserApproval middleware ensures any specifi-
cally named people who must approve have done so. Next is a check
to ensure that there aren’t any comments that prevent merging on
the actual pull request, such as “wait to merge,” “this PR is not ready,”
or even “NO NO NO NO NO.” If everything has passed so far, we
get to the middleware that starts the merge. It runs a fetch, veri-
fies that the branch we want to merge exists, and then checks that
the branch is zero commits behind and one ahead (or if this was
disabled, it passes through untouched). It checks to make sure all the
Jenkins builds associated with this pull request have passed. It will
then actually perform the merge and then optionally start another
Jenkins build.

Each of these middleware pieces can be used to create other
stacks for different purposes. It’s a powerful way to build small bits
of single-purpose code that can be used in a number of different
ways. To me, it completely makes sense for this purpose. I’d recom-
mend looking into middleware for building applications if you’re not
already familiar with it. It makes things seem a lot simpler, especially
if you’re used to working in a full stack framework.

Triggering a Build
This BitbucketBuildCommentCheck middleware in Listing 2 allows

our pull requests to have special comments which start a Jenkins.
Our typical configuration for these comments are “test this please”,

“test this plox”, “test please”, “test plox”, “test now”,“u test now”, or
“wai u no work”. If someone leaves a comment containing one of
those phrases on a Pull Request, Bitbucket sends a webhook event
to an endpoint specifically intended to start a Jenkins build. If
the comment is not one of those, then the middleware pipeline is
stopped because the comment is normal.

Queuing a Request
Listing 3 is the QueueRequestService class—a service which is

called from middleware. It execute after a set of minimal validations
have run. Those checks include things like ensuring the body of the
request is JSON and contains certain key fields. If the request passes,
this middleware will serialize the incoming request into Rabbit MQ
and respond back with a “Processing…” message. This message will
be returned back to Slack which will show the user who made that
request a message. Plus since it will be fast to do this, we can get the
message back to Slack quickly before it times out. Then a worker can
process the job and do the real work and send additional messages
to Slack once the work is completed.

LISTING 2
01. <?php
02.
03. namespace App\Action\Bitbucket;
04.
05. use App\Utility\Error;
06. use Psr\Http\Message\ResponseInterface;
07. use Psr\Http\Message\ServerRequestInterface;
08.
09. class BitbucketBuildCommentCheck
10. {
11. /**
12. * @var array
13. */
14. private $comments;
15.
16. public function __construct(array $comments) {
17. $this->comments = $comments;
18. }
19.
20. public function __invoke(ServerRequestInterface $request,
21. ResponseInterface $response,
22. callable $next) {
23. $serverParams = $request->getServerParams();
24. if (($serverParams['HTTP_X_EVENT_KEY'] ?? null)
25. == "pullrequest:comment_created") {
26. $body = $request->getParsedBody();
27. $comment = strtolower(
28. trim($body['comment']['content']['raw'])
29.);
30. if (!in_array($comment, $this->comments)) {
31. $error = new Error(
32. "Not building PR just because you commented.",
33. ['log' => false]);
34. }
35. }
36.
37. return $next($request, $response, $error ?? null);
38. }
39. }

phparch.com

 www.phparch.com \ August 2016 \ 6

Leveling Up

How We Automate With Slack

Validating Keys
ValidateKey in Listing 4 is another middleware component used

in many routes. It is provided with a set of key/value pairs from a
configuration file. When the middleware pipe passes through, this
class pulls a “key” value from the request’s query parameters and
compares the expected key with one from the provided config based
on the URI from the request. This key is a “shared secret” which we
use to ensure that even if the endpoint is guessed, the key must be
included or the middleware pipeline will stop here.

Conclusion: Stop Re-Doing It
If there’s something you have to do regularly that is painful,

tedious, boring, repetitive, or error-prone, I’d highly recommend
automating it. Let the computer take care of the repetitive, boring
parts. If you can integrate that automation in Slack, it provides a
nice way for anyone in your Slack team to take advantage of the new
commands and functionality. Stop doing everything manually, and
get back cycles you can use on things the computer doesn’t do well,
like actually writing code. Have a great month—see you next time.

 David Stockton is a husband, father and Software Engineer
and builds software in Colorado, leading a few teams of software
developers. He’s a conference speaker and an active proponent of
TDD, APIs and elegant PHP. He’s on twitter as @dstockto, YouTube
at http://youtube.com/dstockto, and can be reached by email at
levelingup@davidstockton.com.

LISTING 3
01. <?php
02.
03. namespace App\Service\Rabbit;
04.
05. use PhpAmqpLib\Connection\AMQPStreamConnection;
06. use PhpAmqpLib\Message\AMQPMessage;
07. use Psr\Http\Message\ServerRequestInterface;
08. use Zend\Diactoros\Response\JsonResponse;
09.
10. class QueueRequestService
11. {
12. /**
13. * @var AMQPStreamConnection
14. */
15. private $connection;
16.
17. public function __construct(
18. AMQPStreamConnection $connection
19.) {
20. $this->connection = $connection;
21. }
22.
23. /**
24. * @return JsonResponse
25. */
26. public function queueRequest(
27. ServerRequestInterface $request
28.) {
29. $channel = $this->connection->channel();
30. $channel->queue_declare('process_requests', false,
31. true, false, false);
32.
33. $data = json_encode(['request' => serialize($request)]);
34. $msg = new AMQPMessage(
35. $data, ['delivery_mode'
36. => AMQPMessage::DELIVERY_MODE_PERSISTENT]);
37.
38. $channel->basic_publish($msg, '', 'process_requests');
39.
40. $channel->close();
41. $this->connection->close();
42.
43. // send response to client
44. return new JsonResponse("Processing...");
45. }
46. }

LISTING 4
01. <?php
02.
03. namespace App\Action\Deploy\Validators;
04.
05. use App\Utility\Error;
06. use Psr\Http\Message\ResponseInterface;
07. use Psr\Http\Message\ServerRequestInterface;
08.
09. class ValidateKey
10. {
11. private $keys;
12.
13. public function __construct(array $keys) {
14. $this->keys = $keys;
15. }
16.
17. public function __invoke(ServerRequestInterface $request,
18. ResponseInterface $response,
19. callable $next) {
20. $params = $request->getQueryParams();
21. $path = $request->getUri()->getPath();
22. $keys = $this->keys[$path] ?? [];
23. if (!in_array(($params['key'] ?? null), $keys)) {
24. $error = new Error("Invalid request key.");
25. }
26.
27. return $next($request, $response, $error ?? null);
28. }
29. }

Want more articles
like this one?

phparch.com
https://twitter.com/dstockton
http://youtube.com/dstockto
mailto:levelingup%40davidstockton.com?subject=

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.
Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

PHP Application Hosting

p
hp

[architect] m
ag

azine A
ug

ust 2016

U
nleashing

 A
utom

ation

Volum
e 15 Issue 8

www.phparch.com
August 2016
VOLUME 15 - Issue 8

More Than Just an “OK” Dev What’s Your Code Tolerance?Connecting Your Charts to a MySQL Database

Community Corner:The Tangled Web We Weave
Security Corner:The Hitchhiker’s Guide to Authorization

fi nally{}:
We are in a Tech Recession

Unleashing AutomationDeploying with Ansible
Using Etsy/Phan for Static AnalysisHow We Automate With SlackALSO INSIDE

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2016-2,August

