
PHP Application Hosting

www.phparch.com September 2016
VOLUME 15 - Issue 9

Building for the Internet of Things
in PHP

Community Corner:
Be a Community Builder

Security Corner:
Your Dependency Injection
Needs a Disco

Leveling Up:
Behavior Driven Development With
Behat

Security Corner:
Two-Factor All the Things

fi nally{}:
On the Value of a Degree…

Legacy Code
of the Ancients

Illuminating Legacy Applications

The Modernization of Multiple Legacy Websites

Legacy Code Needs Love Too

ALSO INSIDEFREE

Article!

FEATURE

The
Modernization
of Multiple
Legacy Websites
Jack D. Polifka

Most developers will need to maintain legacy code at some point in their career. That code will
hopefully be contained in a single codebase, but may instead be contained across several, and
working with multiple legacy systems can be daunting. In this article, I share my experiences
in maintaining multiple legacy websites which were primarily written with procedural PHP.
I describe the steps I used to migrate the existing code to a single codebase utilizing a
Composer-based Model-View-Controller framework. After describing the process, I will share
points of success, as well as possible improvements.

Introduction
The process I am about to describe should be helpful for any

developer who needs to work with any legacy code in PHP, not
just code which contains multiple websites or systems. Addi-
tional elements will be present to address the feature of having
multiple websites. I hope to give a high-level overview of the
steps I used for the process with only finer details as needed. I
will not be naming specific libraries or components. Most devel-
opers already have personal favorite libraries or components
when it comes to specific functionality. Instead, I will just name
a few which can fulfill the desired functionality when needed.

Planning
The first step in working with any legacy code is planning.

The process used for interacting with legacy code will depend
on a project’s resources and goals. For this specific project, I
was the only developer, making resources limited. Regarding
goals, there were three main goals. The first was to keep each
website operational during the migration. The second goal was
to be able to continue to respond to clients’ needs and other
maintenance issues. Last, to combine all of the websites into
a single codebase to share configuration settings and common
dependencies. Since I was the only developer maintaining these
websites, I believed this would reduce the amount of develop-
ment time required for future tasks by removing the need to
interact with separate codebases.

Based on those resources and goals, an iterative process was
selected to handle changes in sections until the groundwork for
a Model-View-Controller (MVC) architecture was set up. An
iterative process was selected for two primary reasons. First, it
allowed me to divide the migration tasks into smaller pieces,
which allowed me to be more readily available to client requests.
Second, it reduced the level of associated risk with each set of

changes. By reducing the number of changes required for each
task, the possibility for program errors was also reduced. Once
MVC was properly implemented, all future tasks were complet-
ed using that architecture. This was for code which added new
functionality and any existing code that needed to be updated.

Setting up the Basics
When I started the migration, only one of the websites I

inherited had a development website. Since programming in
a production environment inevitably leads to errors on a live
website, I set up development environments for each website.
For the short term, production tables and data were copied from
the production databases to the development databases. Later,
this process would be automated. Finally, a Git repository was
set up and all code for each website was version controlled.

With a proper development environment, I could begin with-
out the risk of affecting production. The first development task
was to put the code of each website into subfolders of another
folder called web. Each subfolder was named according to the
website code it contained. This can be seen in Figure 1. This web
folder would become the entry point for each website. Each
website was set up as a symlink to its corresponding web folder.
This setup is done to share configuration settings and common
dependencies which are discussed shortly.

FIGURE 1Initial Directory Layout

The Modernization of Multiple Legacy Websites

Routing and the Front Controller
The next step in the migration was the addition of routing and

a front controller for each website. PHP has a great selection of
routers such as FastRoute1, Symfony Routing2, and Aura Router3.
In the event the router selected requires configuration files for
mapping responses to controller/action combinations, a settings
directory can be set up with a subfolder for each website. With a
router selected, an appropriate composer.json was set up so it
and other dependencies could be downloaded with Composer.
Remember, if the router selected uses non-PHP files, then an
appropriate method for parsing them will need to be selected
and added to the composer.json.

With the router downloaded, a front controller was added to
the root of each website folder in the web directory. The front
controller would try to match the address of any request sent to
the website to a controller and action. If a request did not map
to any controller/action combination or if the controller/action
combination did not exist, a 404 Not Found response would be
sent. Each front controller would resemble Listing 1.

To use front controllers, all requests need to be forwarded
through them. Since Linux, along with Apache, were being used
for my websites, mod_rewrite was used. An .htaccess file
was created for each website folder in the web directory. These
.htaccess files in their simplest form looked like the following:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^front_controller.php [QSA,L]

This redirected any requests for non-existent files and
directories to the front controller. It should be noted there
were special cases where the .htaccess files did not redirect
requests to legacy files even if they existed. This was for the
case where index files were absent from web requests such as
www.website-a.com/request/address/. To account for
these, a simple if statement was added to each front control-
ler that looked for .php in strings. If it was not found, it was
assumed to be an index file. If a mix of PHP and HTML files
were used, it would have been updated to include .html as well.

Lastly, since the request for files would come from the front
controller at times, code such as require, require_once, and
include were modified to account for the new directory layout,
1 FastRoute: https://github.com/nikic/FastRoute
2 Symfony Routing: http://symfony.com/doc/current/routing.html
3 Aura Router: https://github.com/auraphp/Aura.Router

FIGURE 2Directory Layout with Front Controllers

Open source partner
solutions in Marketplace

Bring the open source
stack and tools you love

LISTING 1
01. <?php
02.
03. require_once(__DIR__ . '/../autoload.php');
04.
05. // The router of your choice would be setup here and
06. // would try to match requests based on your mapping of
07. // requests to controllers and actions
08.
09. if ($routerFoundMatch === true) {
10. $controller->action();
11. } else {
12. $this->redirect('/404/');
13. }

https://github.com/nikic/FastRoute
http://symfony.com/doc/current/routing.html
https://github.com/auraphp/Aura.Router

The Modernization of Multiple Legacy Websites

which now resembles Figure 2. This is done to all legacy files to
be consistent.

Configuration
With each website having a front controller and common point

for requests, the configuration was set up for each website. Over-
all, three sets of configurations were created: a set of production
settings to be shared among all of the websites, a development set
whenever a website was accessed from a development website,
and a set of website specific settings. Configuration was set up
in a cascade style so production settings would always be read
first, overridden by development settings, and finally website
specific settings. Like the router, I am not going to tell how you
should store your application settings, but make sure to add
the necessary updates to composer.json. After configuration
setting files were added, the directory layout looked like Figure
3. Listing 2 shows the updated source for each front controller.

Template System and Future
Updates

The last major component missing from the MVC setup
was a template system. Examples of template systems include
Twig4 and Blade5. When the template system was set up, the first
MVC migration occurred. From there, all future tasks would be
completed in MVC whether they were for new functionality or
to update and refactor existing code.

Testing
Each major update in the migration process was accompanied

by user acceptance testing and/or unit tests. User acceptance
testing was used for most updates unless the changes were

4 Twig: http://twig.sensiolabs.org
5 Blade: https://laravel.com/docs/5.2/blade

not notable, such as a simple text update. Because users of the
system had the most experience with interacting with the appli-
cation, it was best for them to confirm areas of functionality
remained the same after refactoring. People who had less expe-
rience with the system might have missed edge-cases which only
someone experienced with the system would catch. After using
the system on the development site and then approving that the
updates were working as intended, changes would be moved to
the production site.

Unit tests were written using PHPUnit. After a section of
code was updated to be object oriented, unit tests were written
for that section. Tests were primarily written for functionality
which was commonly used, business critical, or had multiple
edge-cases. Because I did not have access to systems such as
Jenkins or Bamboo, unit tests were manually run after commit-
ting code changes to version control or before moving changes
to production.

Areas of Success
One area of success was the low amount of scope creep. It

is often tempting during migrations to want to add new func-
tionality while refactoring different areas of code. With proper
planning, outlining of goals, and taking note of resources, the
objectives of a rewrite can be focused on just refactoring. Having
a clear timeline and high level goals from the start can help steer
those involved in a project from losing sight of the end product.

Another point of success was the use of the iterative process.
During the migration, none of the production websites expe-
rienced any major interrupts. In addition, non-migration
development tasks were still completed at a steady pace. By
using an iterative process to make updates, change sets of

FIGURE 3Directory Layout with Configuration Files

LISTING 2
01. <?php
02.
03. require_once(__DIR__ . '/../autoload.php');
04.
05. $yourConfig->getSettings('../settings/production.yml');
06. if ($developmentEnvironment === true) {
07. $yourConfig->getSettings('../settings/development.yml');
08. }
09.
10. // Get website specific settings
11. $yourConfig->getSettings('../settings/' . $nameOfSite
12. . '/settings.yml');
13.
14. // The router of your choice would be setup here and
15. // would try to match requests based on your mapping of
16. // requests to controllers and actions with settings
17.
18. if ($routerFoundMatch === true) {
19. $controller->action();
20. } else if ($phpFileTypeFound !== true) {
21. $this->include($uri . '.php');
22. } else {
23. $this->redirect('/404/');
24. }

http://twig.sensiolabs.org
https://laravel.com/docs/5.2/blade

The Modernization of Multiple Legacy Websites

manageable size were pushed to production instead of large
ones. This decreased the chance of poor or malfunctioning code
making it through testing. At the same time, an iterative process
allowed for the migration to be broken down into parts where
other development tasks could be completed in between phases
of the migration when time was available.

Room for Improvement
One improvement could be the use of a standard framework

like Laravel or Symfony instead of a Composer-based MVC
framework. Whatever framework was selected, a catch-all rout-
ing system could have been set up where any request that did
not match any of the predefined routes would automatically set
forward to the correct PHP file. This would have allowed the
whole system to use an already established set of practices that
have base communities. Events such as troubleshooting would
be improved by the number of users in those communities. One
possible drawback with this, though, would be the time invest-
ment in the beginning. First, all the details may not be known
about the selected framework requiring learning. (Not to say
that learning is bad, but if development speed is critical, this
should be considered). Second, using a framework from the
beginning would have increased the amount of programming
required at the start. Several migration tasks would need to be
done at one time versus over several instances, which could
increase the chances of a malfunction in production, due to
testing oversight.

Another improvement would be the implementation of more
unit tests. As stated before, the unit tests that were written were
for functionality that was commonly used, business critical, or
had multiple edge-cases. Having more tests would have provid-
ed more confidence in what was developed and what was tested.
Also, they would act as a litmus test for any future enhancements
or refactors making sure functionality covered by tests continue
to work correctly.

Conclusion
While the process used here was successful for me in address-

ing a migration with multiple websites, I believe what should be
noted are the non-programming aspects of the process. Specif-
ically, the planning stage before any coding happens, having a
development environment including development websites
and version control, and the use of an iterative process. The
planning stage helps developers take inventory of their goals,
determine resources they have available to complete the project,
and to create a plan. A development environment with version
control allows a developer to focus on programming without
affecting production websites. An iterative process allows work
for a migration to be broken down into smaller steps, there-
by reducing the amount of associated risk and also increasing
the turnaround time. Any migration would benefit from these
advantages.

Additional Reading
Modernizing Legacy Applications in PHP6, by Paul M. Jones.

The book describes a step by step process which can be used
to update a legacy codebase made of procedural code to an
MVC framework, very similar to the scenario I encountered.
Before describing the migration process, Jones emphasizes one
of the most important ideas for any migration which is the use
of an iterative process. By using an iterative process, no major
rewrites need to take place where the level of resources required
is high. In addition, using an iterative process allows work to be
completed in smaller steps, which can go hand-in-hand with a
steady flow of everyday development tasks.

So You Just Inherited a $Legacy Application… slides7, by Joe
Ferguson, a presentation from php[tek] 2016. The presentation
slides can found online. This presentation emphasizes the plan-
ning stage before a migration occurs. As stated earlier, proper
planning before touching code can prevent a lot of headaches
during the migration process. Ferguson points out six common
issues via questions which can answered in the planning stage.
For each question, several resources are presented which can be
used to address the issue. For example, one of the questions ask,

“Is there a development environment?” Following are slides with
references to using Vagrant, Docker, or physical hardware. The
other questions are:

1. Is there a framework?
2. Is there a coding standard?
3. Is there any autoloading?
4. How are dependencies behind being handled?
5. Is there an Object-relational mapper or how is the data-

base being utilized?

 Jack is a software engineer for
the Graduate College at Iowa State
University. His past is a mix of
academics and industry with a
Master of Science in Human Comput-
er Interaction, two and a half years
at Opticsplanet.com, and a Bachelor
of Science in Web and Digital Media
Development. @jack_polifka

6 Modernizing Legacy Applications in PHP:
https://leanpub.com/mlaphp

7 So You Just Inherited a $Legacy Application… slides:
http://phpa.me/inherited-legacy-app-slides

https://twitter.com/jack_polifka
https://leanpub.com/mlaphp
http://phpa.me/inherited-legacy-app-slides

The Modernization of Multiple Legacy Websites

Docker For Developers is designed
for developers who are looking
at Docker as a replacement for
development environments like
virtualization, or devops people
who want to see how to take an
existing application and inte-
grate Docker into that workflow.
This book covers not only how
to work with Docker, but how
to make Docker work with your
application.
You will learn how to work with
containers, what they are, and how
they can help you as a developer.

You will learn how Docker can make it easier to
build, test, and deploy distributed applications. By running Docker and
separating out the different concerns of your application you will have a
more robust, scalable application.

You will learn how to use Docker to deploy your application and make
it a part of your deployment strategy, helping not only ensure your
environments are the same but also making it easier to package and
deliver.

Purchase
http://phpa.me/docker4devs

Docker For
Developers
by Chris Tankersley

D
ocker for D

evelopers

Chris Tankersley

Chris Tankersley is a PHP Developer living in Northwest Ohio.

He has been developing PHP applications for more than ten

years, across a wide variety of frameworks and business needs.

In addition to programming, Chris manages hosting and server

deployments for developers that are looking for more than just

what basic hosting provides. He currently spends most of his

time working with Sculpin, Zend Framework 2, and Drupal.Chris is also an author of many PHP articles for php[architect],

as well as a speaker, traveling around the US giving talks

at many PHP-based conferences. Chris also helped found

the Northwest Ohio PHP User Group. Chris is the PHP FIG

representative for Sculpin, a static site generator written in PHP,

and the lead developer for the PHP Mentoring website.

Docker For Developers is designed for developers who are looking at Docker as a
replacement for development environments
like virtualization, or devops people who
want to see how to take an existing applica-
tion and integrate Docker into that work-
�low. This book covers not only how to work
with Docker, but how to make Docker work
with your application.You will learn how to work with containers, what

they are, and how they can help you as a developer.You will learn how Docker can make it easier to
build, test, and deploy distributed applications. By
running Docker and separating out the different
concerns of your application you will have a more
robust, scalable application.

You will learn how to use Docker to deploy your
application and make it a part of your deployment
strategy, helping not only ensure your environments
are the same but also making it easier to package
and deliver.

www.phparch.com Chris Tankersley
Chris Tankersley

Want more articles
like this one?

http://phpa.me/docker4devs

Docker For Developers is designed
for developers who are looking
at Docker as a replacement for
development environments like
virtualization, or devops people
who want to see how to take an
existing application and inte-
grate Docker into that workflow.
This book covers not only how
to work with Docker, but how
to make Docker work with your
application.
You will learn how to work with
containers, what they are, and how
they can help you as a developer.

You will learn how Docker can make it easier to
build, test, and deploy distributed applications. By running Docker and
separating out the different concerns of your application you will have a
more robust, scalable application.

You will learn how to use Docker to deploy your application and make
it a part of your deployment strategy, helping not only ensure your
environments are the same but also making it easier to package and
deliver.

Purchase
http://phpa.me/docker4devs

Docker For
Developers
by Chris Tankersley

D
ocker for D

evelopers

Chris Tankersley

Chris Tankersley is a PHP Developer living in Northwest Ohio.

He has been developing PHP applications for more than ten

years, across a wide variety of frameworks and business needs.

In addition to programming, Chris manages hosting and server

deployments for developers that are looking for more than just

what basic hosting provides. He currently spends most of his

time working with Sculpin, Zend Framework 2, and Drupal.Chris is also an author of many PHP articles for php[architect],

as well as a speaker, traveling around the US giving talks

at many PHP-based conferences. Chris also helped found

the Northwest Ohio PHP User Group. Chris is the PHP FIG

representative for Sculpin, a static site generator written in PHP,

and the lead developer for the PHP Mentoring website.

Docker For Developers is designed for developers who are looking at Docker as a
replacement for development environments
like virtualization, or devops people who
want to see how to take an existing applica-
tion and integrate Docker into that work-
�low. This book covers not only how to work
with Docker, but how to make Docker work
with your application.You will learn how to work with containers, what

they are, and how they can help you as a developer.You will learn how Docker can make it easier to
build, test, and deploy distributed applications. By
running Docker and separating out the different
concerns of your application you will have a more
robust, scalable application.

You will learn how to use Docker to deploy your
application and make it a part of your deployment
strategy, helping not only ensure your environments
are the same but also making it easier to package
and deliver.

www.phparch.com Chris Tankersley
Chris Tankersley

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.
Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

PHP Application Hosting

www.phparch.com
September 2016

VOLUME 15 - Issue 9

Building for the Internet of Things in PHP
Community Corner:Be a Community Builder

Security Corner:Your Dependency Injection Needs a Disco

Leveling Up:
Behavior Driven Development With Behat

Security Corner:Two-Factor All the Things
fi nally{}:
On the Value of a Degree…

Legacy Code
of the Ancients

Illuminating Legacy ApplicationsThe Modernization of Multiple Legacy WebsitesLegacy Code Needs Love Too
ALSO INSIDE

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2016-2,September

