
Security Anthology 2016
php[architect]

Web Security 2016
from php[architect] magazine

www.phparch.com a php[architect] anthology
a php[architect] anthology

a php[architect] anthology

Edited By Oscar Merida

Are you keeping up with modern security practices? � is
anthology collects articles � rst published in php[architect] maga-
zine. Each one touches on a security topic to help you harden and
secure your PHP and web applications. Your users’ information is
important, make sure you’re treating it with care.

� is anthology includes:

• An overview of the attacks you should be familiar with and how to protect
against exploits.

• Using a PHP-based Intrusion Detection System to monitor and reject requests
that attempt to breach your site.

• How to protect against SQL Injection from user-supplied data by using
prepared statements.

• A case study in how the Drupal security team keeps core and contributed
modules safe.

• How to securely store passwords and understanding the techniques used to
crack credentials.

• Using OAuth 2.0 to connect to web services and fetch information for your
users without asking for a password.

• How web service security di� ers from traditional web application security and
advice for e� ectively protecting one from malicious users.

• Identifying the right kind of cryptography to implement in your application
and doing it correctly.

Each month in php[architect] magazine, experts from the PHP community
and wider web development community share their knowledge and experi-
ence with our readers. Leverage their expertise in building and protecting
websites for all types of organizations.

Security Anthology 2016
php[architect]

Web Security 2016
from php[architect] magazine

www.phparch.com a php[architect] anthology
a php[architect] anthology

a php[architect] anthology

Edited By Oscar Merida

Are you keeping up with modern security practices? � is
anthology collects articles � rst published in php[architect] maga-
zine. Each one touches on a security topic to help you harden and
secure your PHP and web applications. Your users’ information is
important, make sure you’re treating it with care.

� is anthology includes:

• An overview of the attacks you should be familiar with and how to protect
against exploits.

• Using a PHP-based Intrusion Detection System to monitor and reject requests
that attempt to breach your site.

• How to protect against SQL Injection from user-supplied data by using
prepared statements.

• A case study in how the Drupal security team keeps core and contributed
modules safe.

• How to securely store passwords and understanding the techniques used to
crack credentials.

• Using OAuth 2.0 to connect to web services and fetch information for your
users without asking for a password.

• How web service security di� ers from traditional web application security and
advice for e� ectively protecting one from malicious users.

• Identifying the right kind of cryptography to implement in your application
and doing it correctly.

Each month in php[architect] magazine, experts from the PHP community
and wider web development community share their knowledge and experi-
ence with our readers. Leverage their expertise in building and protecting
websites for all types of organizations.

Sam
ple

Web Security 2016
From php[architect] Magazine

Edited By
Oscar Merida

a php[architect] anthology

Sam
ple

Web Security 2016 III

 Introduction VII

Chapter 1. Is Your Website Secure from Hackers? 1
Authentication and Authorization 2
Database Interaction 5
Files and Resources 7
CMS, Framework, and Other Components 10
Final Note 13
Additional resources 14

Chapter 2. Basic Intrusion Detection with Expose 15
What Is an IDS and Why You Should Use One 15
Advantages, Limitations, and Disadvantages of Expose 18
Expose Installation Run Through 21
Logging, Alerting, and Thresholds 25
Next Steps 26
Conclusion 27

Table of
Contents

Sam
ple

Web Security 2016IV

 Table of Contents

 Manage Software Vulnerabilities 39
Drupal 8 40
Keeping a Drupal Site Secure 40
Drupal Security Team 40
Software Vulnerabilities 41
Reporting a Drupal Security Issue 41
Handling Drupal Security Issues 42
Security Advisory 42
The Drupal Security Team Welcomes New Members 44
Open Source 44

Chapter 5. Mastering OAuth 2.0 45
Let’s Jump In 46
Preparing for OAuth 47
Integrating with Instagram 49
A Brief History of Web Authorization 55
What is OAuth 2.0? 56
Toward a More Secure Web 60

Chapter 3. DeLoreans, Data, and Hacking Sites 29
Introduction 30
What Is SQLi? 31
Identifying Potential SQL Injection 33
“Hacking” Your Own Sites 34
Prepared Statements 36
Conclusion 38

Chapter 4. Drupal Security: How Open Source Strengths

Sam
ple

Web Security 2016 V

Chapter 6. Keep Your Passwords Hashed and Salted 61
Introduction 61
Rule One: No Plain Text 62
What is Hashing? 62
How to Use Hashes 64
Techniques Crackers Employ to Break Hashes 66
Salting Passwords 69
Use Proper Salt 70
Hashing Algorithms 71
Better Algorithms 71
Hashing in PHP 73
Password-Related Functions in Modern PHP 74
Summary 75

Chapter 7. Learn from the Enemy: Securing Your
 Web Services, Part One 77

It Happens 78
Web Services are Different 80
Learn from the Master 84
Looking Forward 85
Additional Reading 85

Chapter 8. Security Architecture: Securing your
 Web Services, Part Two 87

Web Service Security 88
Your Security Architecture 91
Security Implementation 96

Sam
ple

Web Security 2016VI

Chapter 9. Implementing Cryptography 97
Use the Encryption Library 97
Randomness 100
Using Randomness 100
The Session Token 101
Encrypting and Decrypting a String 102
Involving Experts 106
Additional Reading 107

 Contributors 109
Ed Barnard 109
Leszek Krupinski 109
Nicola Pietroluongo 109
Ben Ramsey 109
David Stockton 110
Cathy Theys 110
Greg Wilson 110

 Permissions 111

 Index 113Sam
ple

Web Security 2016 VII

Introduction
“The mantra of any good security engineer is: ‘Security is a not a product,

but a process.’ It’s more than designing strong cryptography into a system; it’s
designing the entire system such that all security measures, including cryptog-
raphy, work together.”

— Bruce Schneier

Whenever I discuss computer security, I like
to remind people of the sentiment in the quote
above. Security is not just a box you can check
off and be done with prior to a release. On the
web, attackers probe and discover new vulner-
abilities on a daily basis not just in PHP itself
but in the applications built on it.

Sensitive information, from financial to
medical records, is migrating to the 24/7
connected, online world. Keeping your appli-
cation—and more importantly your users’
data—secure is an iterative process requiring
regularly reviewing every component in your
stack for new vulnerabilities, keeping them
patched and updated, and vetting new parts
to ensure they don’t compromise the overall
system.

In the following pages, we’ve collected secu-
rity articles from the pages of php[architect]
magazine. Read on to see how to make sure
you use modern techniques to monitor your
systems and keep them secure.

To start, Nicola Pietroluongo asks Is Your
Website Secure from Hackers? He provides an
overview of the attacks you should know and
also how to protect your applications against
them.

In Basic Intrusion Detection with Expose,
Greg Wilson makes the case for having an
Intrusion Detection System in place and shows
you how to setup Expose, a PHP-based IDS.

David Stockton explores SQL injection and
how to prevent it in DeLoreans, Data, and
Hacking Sites. If you still have legacy code
that concatenates strings to build SQL queries,
don’t miss this article.

Cathy Theys looks at the Drupal ecosystem
in Drupal Security: How Open Source Strengths
Manage Software Vulnerabilities. She explains
how the Drupal project’s security team lever-
ages Open Source to keep Drupal core and
contributed modules secure.

Leszek Krupiński writes about how pass-
words are stored and the techniques used to
crack them in Keep Your Passwords Hashed
and Salted. Learn how passwords can be
reversed, given enough computing password,
and how you can mitigate this risk.

In Mastering OAuth 2.0, Ben Ramsey shows
how to use the league/oauth2-client library to
connect to Instagram. OAuth is now a de facto
standard for connecting your application to
web services, and this article is a step-by-step
example explaining how it all works.

Sam
ple

Web Security 2016VIII

Edward Barnard starts a three-part series with Learn from the Enemy: Securing Your Web
Services, Part One. In this part, he’ll show you why your website and web service should be
treated differently when talking about security.

If your decoupled application is talking to or providing one or more APIs, don’t miss Security
Architecture: Securing your Web Services, Part Two by Edward Barnard. In this part, he has advice
for an effective web services security approach.

In his third feature on security, Edward Barnard gives advice on Implementing Cryptography.
Cryptography certainly seems like some magical math stuff that helps keep our data secure, but
doing it correctly can be really tricky.

Sam
ple

Web Security 2016 29

Chapter

3
DeLoreans, Data, and
Hacking Sites

David Stockton

In the mid to late 1980s, Robert Zemeckis, Michael J. Fox, and Christopher
Lloyd (and others) created a series of movies that explored time travel, para-
doxes, and how if you mess up the past and your parents don’t fall in love, you
may cease to exist. The second movie in the series (spoiler alert!) involves a bit
where Biff, the series antagonist, retrieves a sports almanac from the future,
brings it to the past, and is able to place a large series of winning bets on the
outcome of various events, placing him at the top of his own empire and greatly
affecting the future in an arguably negative way.

Sam
ple

Web Security 201630

DeLoreans, Data, and Hacking Sites

Introduction
While the movies are excellent and beloved by many, they’re not real. There’s no actual stain-

less steel car that can send the occupants through time when it reaches 88 miles per hour. In the
movie, Marty jumps forward to just a few weeks from now—October 21, 2015. In a few weeks,
we’ll know completely how accurate or ridiculous the predictions made in this movie may be.
Some prognostications have come true, while others, not so much. For instance, fax machines,
while they still exist, unfortunately do not play nearly as large of a role today as the movies
predicted. We also still don’t have a real hoverboard.

As much as I would love to revisit these movies and talk about them for hours, I do have a
point—and a way to tie all this together. In Back to the Future, Part II, Biff uses his knowledge
of the future to make himself a lot of money. It is not hard to imagine that if one could actually
predict the future, it would not be difficult to use that knowledge for profit. However, we cannot
predict the future. Mostly.

Prediction is difficult, especially when dealing with the future.
- Danish Proverb

On August 11, 2015, just a couple of weeks ago, federal authorities unsealed charges against
32 hackers and international traders who used their knowledge of the future to gain profits of
over $100 million by trading stocks. Now, it’s certainly not illegal to trade stocks, but it is illegal
to trade stocks when you have insider information about the deals a company may make or how
it will announce its performance during its annual or quarterly reviews. However, these people
were not (to my knowledge) insiders in the traditional sense. They used knowledge that was
released to the public via news articles to make trades that made them a lot of money. So what’s
the problem?

The information they were using was in the form of not-yet-released news articles, press
releases, earnings statements, and more acquired by hacking the networks belonging to
Marketwired and the PR Newswire Association. This gave them access to these articles before
they were published, allowing them to trade based on easy-to-make predictions of what would
happen to various companies’ stock prices before the public knew about the news. If you have a

Sam
ple

What Is SQLi?

Web Security 2016 31

way of knowing with a fair amount of certainty that a stock price is going to get a good bump (or
take a dive), it’s not hard to make trades that will take advantage of that knowledge.

By using a series of SQL injection attacks against the servers, over three years, the hackers
gained access to about 150,000 draft news articles, which they used to make informed trades.
They didn’t do this all at once, and they didn’t act on every article that was stolen, which made it
harder for authorities to figure out that something shady was going on.

What Is SQLi?
Last month, I talked briefly about SQL injection, or SQLi attacks. This month, it’s all about

that. Like PHP, SQL (which stands for Structured Query Language) has certain keywords that
mean something to the language on their own. These include words like SELECT, INSERT,
UPDATE, DELETE, WHERE, and INTO, among others. In between these keywords, you’ll find words
that were supplied by a user: names of tables, fields, functions, and more. In many queries, there
are also values or patterns, which are used to control or limit the records that are affected by a
particular query.

The database engine that runs the queries and gives back results or changes data is able to
interpret a provided instruction string into keywords, identifiers, and data in order to do what
we’ve asked it to do. The problem comes about when the SQL engine doesn’t know what the
intention of a query is, and it doesn’t know the difference between the instruction parts of SQL
that the developer wanted to run as instruction and data provided by a user, which may be
misinterpreted as instruction, rather than data.

Let’s take a look at how a SQL statement might be built and how it could be susceptible to an
injection attack:
$query = "SELECT * FROM users WHERE username = '{$_REQUEST['user']}';"
// Run the $query

Now suppose we’ve set up a page with a field called user, and we have well-behaved users. As
long as they’re not messing around with us, a field containing a standard string representing a
username will come into that query, and we’ll have something that looks like this:
$query = "SELECT * FROM users WHERE username = 'dave';"

That’s a perfectly legitimate query, and it will give back the results the developer was expecting:
If there’s some user named 'dave', then we’ll get a row back. If not, we will get back something
indicating that no such row exists. It’s probably worth noting here early on that most of the code
examples in this article will be bad. Don’t use them in your code unless you’re practicing making
attacks, and certainly don’t let this code get into any code you’re running on public servers.

So let’s jump out a bit to explain $_REQUEST just in case anyone reading is not familiar with
it. $_REQUEST in PHP is what’s known as a Superglobal. It’s automatically set up and populated
by PHP, and it’s available everywhere. The $_REQUEST array will be filled with values from
$_GET (query parameters) and $_POST (standard form data from HTTP POST requests where
the Content-Type is application/x-www-form-urlencoded or multipart/form-data.
If the request comes in with some other Content-Type, then $_POST won’t be populated, and

Sam
ple

Web Security 201632

DeLoreans, Data, and Hacking Sites

$_REQUEST will not have any of the POSTed fields. It’s also possible that $_REQUEST could
be populated by cookie values, depending on your php.ini setting for request_order. By
default, it’s GP, which stands for GET and POST. So right there, it means that it’s not possible to
know from $_REQUEST if the variable is a query parameter, a POST field, or even a cookie. Not
knowing where your variables come from is not a great idea on its own, but that’s a topic for
another day.

Now let’s revisit the SQL above. Suppose we have a user who has an apostrophe in his or
her name, like O’Reilly. This user fills out the form and submits it, and our query becomes the
following:
$query = "SELECT * FROM users WHERE username = 'O'Reilly';";

The string itself is okay, but when executed as a SQL statement, the SQL engine will think the
query is using Reilly as some sort of command and it will fail to run, since the O is contained by
the single quotes. Even though there was (likely) no malicious intent from our O’Reilly user, he
or she is not likely to have a good time on the site since it will not behave well with this user-
name. Back in the early days of PHP, a function named addslashes was added, and uncountable
tutorials on the language recommended its use. The function replaces single quotes with \',
which means our code above changes slightly:
$username = addslashes($_REQUEST['user']);
$query = "SELECT * FROM users WHERE username = '$username';";

Now this is a tiny bit better because our O’Reilly friend will be able to use the site. The
resulting query string becomes the following:
$query = "SELECT * FROM users WHERE username = 'O\'Reilly';";

This is a legitimate, runnable SQL string (in MySQL). But addslashes is bad, so my first
suggestion is to make sure that you’re not using it anywhere in your code. If you find calls to it,
work toward removing them and making your code safe. The prevalence of addslashes and the
false assumption that just escaping (that’s what the backslash is doing) single quotes was good
enough resulted in a misguided concept called magic quotes. Magic quotes meant that PHP
would automatically escape quotes in strings if found. Because the majority of code at the time
was going against MySQL and this worked well enough, it stuck around in PHP for some time.
It was deprecated in PHP 5.3.0 and removed in PHP 5.4.0. While it was around—and because
it’s a feature that could be turned on or off in php.ini—it led to a lot of problems, which, to many
PHP developers, were indicators of other developers or admins who didn’t really understand
what they were doing. Indicators usually were strings, which, when viewed on the site, would
have single quotes prefaced by one or many backslashes. This was typically caused by a developer
working on a machine that didn’t use magic quotes, manually calling addslashes, and then
uploading to a server that was configured with magic quotes. This ultimately caused the backs-
lashes to be escaped, as well.

As PHP evolved and gained more and more support for other flavors of databases, it became
clear that a one-size-fits-all solution to escaping database input would not work and was not
appropriate. Instead, it’s important to filter input strings and escape output strings (output into

Sam
ple

Identifying Potential SQL Injection

Web Security 2016 33

the database, I mean) through a database-specific method, which can ensure that SQL injection
is avoided. More on that in a bit.

For now, though, enough of the history lesson. Let’s get back to SQLi and recommendations
on how to identify and fix issues in the code. If your code contains calls that start with mysql_,
I would highly recommend fixing it. The mysql extension has been deprecated as of PHP 5.5.0
and will be removed in PHP 7. The mysqli extension is recommended over the mysql extension.
If you’re using MySQL on your sites or applications, the mysqli extension will work. Further-
more, it will support everything you can do with MySQL 5.1+. PDO doesn’t support every bit of
every database functionality, just most, but I would still recommend PDO over mysqli (or other
database-specific functions) unless your application requires some of the functionality that PDO
does not support. Chances are, though, PDO will work for anything you’re doing.

The advantage that PDO provides is that you’ll be able to work with a number of different
database engines using the exact same set of method calls. In my previous position, we had a
single application that needed to fetch data from MySQL, PostgreSQL, Oracle, and Microsoft
SQL Server. To use each of these with their native drivers would mean learning mysqli_*, pg_*,
oci*, and mssql_* functions. By using PDO, I was able to connect and send queries into all of
these databases with the same set of methods. While the presence of the SQL dialects means that
the queries needed to be built slightly differently, the PHP calls were all the same.

Identifying Potential SQL Injection
The easiest way to have a SQL injection vulnerability in your code is to build your queries

using string concatenation with user-provided data. By “user-provided data”, I am intending
to cast a wider net than you might be thinking. Of course, all the standard $_GET, $_REQUEST,
$_POST, and $_COOKIE values are suspect. Additionally, I also mean any value that we’ve stored
in the database. You might be wondering why. It’s because at some point, data in the database
may have been inserted through some way that would not pass any restrictions in our own code.
It could be DBAs directly inserting data, loading data from files or sometime in the past when
your application was not quite as secure as it may be today. So with that in mind, I mean we need
to look for queries in our code that are built using PHP variables directly in the query.

In order to find potential SQL injection candidates, you’ll want to search your code for any
queries that you’re running. This means looking for calls to functions like mysql_query or
mysqli_query or even PDO methods like query and execute. Additionally, searches for SQL
keywords like SELECT, UPDATE, INSERT, DELETE, and CALL will help find other places where
queries may have been built in a different place from the code that runs them. When you’ve
found the queries in your code, look at how they are built. Some queries may have no variable
portion of the query, which means that the query never changes based on any variable. Queries
like the following, for instance, are not vulnerable to SQL injection:
SELECT site_title FROM configuration;

If you find PHP variables in the SQL string, such as:
$query = "SELECT $field FROM $table WHERE $whereField = '$whereValue'"

Sam
ple

A

Web Security 2016 113

Index
A
access token, 45, 53–54, 56, 58, 60,

62
 expiration information, 53
 grants, 56
AES encryption, 100–102, 107
algorithms, 3, 63, 71–74
 hashing, 4, 71, 73–75
APIs, 34, 55–56, 59–60, 80, 90, 110
attackers, external, 16
attacks
 brute force, 56, 71–72, 80–81, 91
 collision, 76
 dictionary, 66
 injection, 31
 replay, 88
authentication, 2, 5, 34, 38, 42,

46–47, 88, 103
 codes, 4, 103–4
 keys, 105
authorization, 2–3, 50, 52–54, 56,

58, 85, 88–89, 92
 code grant, 57, 60
 grant types, 56–57
 request, 52–53

B
base64, 71, 73, 102–5
 decode, 106
 encode, 102, 104
bcrypt, 71–72, 74

bot, 80–81, 90
bot ,detection, 81
Bro, 16, 26–27

C
CAPTCHA, 77, 81
certificates, 20, 88–89, 95
 pinning, 94–96
CMS, 2, 10–11
complexity, 3, 72, 74
Composer, 20, 22, 46–47
credentials, 45, 56, 58–60, 62
Cross-Site Request Forgery attack, 4
Cross-Site Scripting, 10, 12, 19, 40
crypt, 3, 73
cryptography, 62, 97, 99, 101,

106–7
 hash functions, 63
 rolling our own, 98
CSPRNG, 4
CSRF, 4–5
CVE, 43

D
database, 17, 32–33, 35–38, 46–47,

53, 63–64, 66–68, 70, 75,
82–83, 93, 95

 connection, 46
 engine, 31, 33, 36
 queries, 36, 83
 sqlite, 46
decryption, 95, 98–99
 function, 99

Sam
ple

Web Security 2016114

Index

 key, 93
 webserver HTTPS, 20
drupal, 17, 39–40, 42, 44, 110
Drupal, security issue, 41

E
encryption, 3, 21, 62–63, 85, 92,

97–103, 105
 keys, 92
 password, 103
 roll your own, 98
 symmetric, 98
entropy, 94, 100–102
escaping, 32, 36, 38

F
Fiddler, 84, 90–91, 95
files
 asp, 16
 composer.json, 22
 env, 47–48
 remote, 7
firewall, 16, 18, 81
 configuration, 81
force, brute, 66, 72
functions
 hashing, 62, 64
 password-related, 74–75
 uniqid, 101

G
Google Digital Attack Map, 27
GPUs, 71–72
grant type, resource owner pass-

word credentials, 58–59
Guzzle, 54

H
hash
 algorithm, 63, 74
 chains, 68–69
 collisions, 63, 69–71
Hash-based Message Authentication

Code, 102
hashes
 breaking, 66–67
 calculating, 71
 multi-algorithm, 73
 reverse, 68
 unique, 69
hash function, 62–63, 72–75
hashing, process of, 62, 71
HIDS, 16–17
HMAC, 98, 102–6
 32-byte, 104
 checksum, 103, 105
HTTPS
 protocol, 83
 proxy, 95
 traffic, 20, 94–95

I
IDS (Intrusion Detection System), 4,

6, 15–21, 25, 27, 101
 application layer, 19–20
 basic, 16, 18, 20, 22, 24, 26, 28,

111
Imperva, 7, 10
Information Security, 85, 107
input, 11, 18, 23, 26, 63–64, 69
 escaping, 18
 escaping database, 32

Sam
ple

K

Web Security 2016 115

 filter, 32
 sanitization, 7
 strings, 63, 70
 validation, 9
Instagram, 46–54, 56
Intrusion Detection System. See IDS

K
keys, public, 95

L
Laravel, 46–48
 scaffolding for authentication, 46
Local File Inclusion (LFI), 7, 19
login
 brute-force, 89
 credentials, 89, 92–93
 form, 11, 34

M
mbstring, 99
mcrypt, 71, 73, 101–2, 104
 extension, 101
md5, 34–35, 37, 64, 70–73, 76
Message Authentication Code, 103
Metasploit, 19
Mutual Authentication, 88–89
mysql, 32–33, 36, 109
 extension, 33
mysqli, 7, 33
 extension, 33

N
NIDS, 16

O
OAuth, 45–47, 49, 54, 56–57,

59–60, 90–91, 93–94
 grant type, 57–60
 three-legged, 57
open-source projects, 26, 41–42
openssl, 4, 98, 101, 104–5, 107
OWASP
 site, 21
 SSL/TLS Cheat Sheet, 83
 Zed Attack Proxy Project, 14
OWASP (Open Web Application Secu-

rity Project), 14, 27, 85

P
Password-Based Key Derivation

Function, 72
passwords
 anti-pattern, 56, 59
 cracking, 66
 dictionary-based, 75
 hashed, 64, 98
 potential, 66, 69, 71
 resetting, 62
 salt, 3, 69–74
 salting, 69
 secure, 56
 storing, 61, 71
 weak, 2, 5, 62
passwordS, hashing, 4, 35, 74, 98
Path Traversal, 7
pbkdf2, 72–73
pcntl, 25
PDO, 7, 33, 36–38
 prepared statements, 36

Sam
ple

Web Security 2016116

Index

PHPIDS, 21, 23, 26
PHP security libraries, 12
PHPUnit, 99
PHP version scanner, 12
PSR-3, 23
PSR-7, 54
Public-Key Cryptography Standards

(PKCS), 72

Q
query string, 32, 54

R
randomness, 85, 97–98, 100, 107
 source of, 101
random number generators, 102,

107
realpath, 9
Remote File Inclusion (RFI), 7
Resource Owner Password Creden-

tials, 58
Reverse Lookup Tables, 67

S
security advisories, 40–41, 43–44
security certificate, 88–89, 95
server
 certificate, 95
 logs, 89–90
 production, 99
 resource, 56, 58
session, 34–35, 37, 49–50, 52–53,

75, 94
 token, 89, 93–94, 96, 101
SHA-256, 71, 73, 100, 103
SHA-512, 71–72

Snort, 16, 19, 26–27
SQL, 31–32, 35
SQL injection, 5, 19, 31, 33–35,

37–38, 62
 attack types, 6

T
tables
 hash chain, 68
 lookup, 67–68
 rainbow, 69–70
Threat Modeling, 80, 86
token, 53, 89–90, 93–95, 101–2
 hijacked, 90
 login, 94–95
 refresh, 53
 renewal, 93–95
 valid, 90, 95
tokens, security, 84
Trustware Global Security Report, 2

U
URANDOM, 73, 101–2, 104
users
 authenticating, 45
 logged-in, 93
 non-authenticated, 35
 valid, 16

V
vulnerabilities, 4, 12, 16–17, 39–42,

44
 common, 14, 40, 43, 83
 exploited, 6
 potential, 12
 published, 19

Sam
ple

W

Web Security 2016 117

W
Web Application Attack Reports, 7, 14
web services, 77–94, 96, 98–99, 101–3, 108, 111
 RESTful, 82
 token-renewal, 95
WordPress, 10, 17
 plugins, 10, 12

X
XSS, 10, 12, 19, 23, 40
 attacks, 21
 example, 11

Sam
ple

	Introduction
	Is Your Website Secure from Hackers?
	Authentication and Authorization
	Database Interaction
	Files and Resources
	CMS, Framework, and Other Components
	Final Note
	Additional resources

	Basic Intrusion Detection with Expose
	What Is an IDS and Why You Should Use One
	Advantages, Limitations, and Disadvantages of Expose
	Expose Installation Run Through
	Logging, Alerting, and Thresholds
	Next Steps
	Conclusion

	DeLoreans, Data, and Hacking Sites
	Introduction
	What Is SQLi?
	Identifying Potential SQL Injection
	“Hacking” Your Own Sites
	Prepared Statements
	Conclusion

	Drupal Security: How Open Source Strengths Manage Software Vulnerabilities
	Drupal 8
	Keeping a Drupal Site Secure
	Drupal Security Team
	Software Vulnerabilities
	Reporting a Drupal Security Issue
	Handling Drupal Security Issues
	Security Advisory
	The Drupal Security Team Welcomes New Members
	Open Source

	Mastering OAuth 2.0
	Let’s Jump In
	Preparing for OAuth
	Integrating with Instagram
	A Brief History of Web Authorization
	What is OAuth 2.0?
	Toward a More Secure Web

	Keep Your Passwords Hashed and Salted
	Introduction
	Rule One: No Plain Text
	What is Hashing?
	How to Use Hashes
	Techniques Crackers Employ to Break Hashes
	Salting Passwords
	Use Proper Salt
	Hashing Algorithms
	Better Algorithms
	Hashing in PHP
	Password-Related Functions in Modern PHP
	Summary

	Learn from the Enemy: Securing Your Web Services, Part One
	It Happens
	Web Services are Different
	Learn from the Master
	Looking Forward
	Additional Reading

	Security Architecture: Securing your Web Services, Part Two
	Web Service Security
	Your Security Architecture
	Security Implementation

	Implementing Cryptography
	Use the Encryption Library
	Randomness
	Using Randomness
	The Session Token
	Encrypting and Decrypting a String
	Involving Experts
	Additional Reading

	Contributors
	Ed Barnard
	Leszek Krupinski
	
Nicola Pietroluongo
	
Ben Ramsey
	David Stockton
	Cathy Theys
	
Greg Wilson

	Permissions
	Index

