
PHP Application Hosting

p
hp

[architect] m
ag

azine D
ecem

b
er 2

0
16

Scru
tin

izin
g

 Yo
u

r Te
sts

www.phparch.com December 2016
VOLUME 15 - Issue 12

Decoupled Blocks With
Drupal 8 and JavaScript
Frameworks

Abstracting HTTP
Clients in PHP

Education Station:
Let’s Build a Chatbot
in PHP

Community Corner:
Focus on What We Have
in Common

Leveling Up:
Building Better Bug
Reports

Security Corner:
Keeping a Secret

fi nally{}:
The Year of ???

Behat: Beyond Browser Automation

Strangler Pattern, Part Three: the Rhythm of
Test-Driven Development

Volum
e 15

 Issue 12

Scrutinizing
Your Tests

ALSO INSIDE

FREE Article!

2 \ March 2016 \ www.phparch.com

FEATURE

Behat: Beyond Browser
Automation
Konstantin Kudryashov

Behat is a tool written in PHP to support teams in practicing
Behavior-driven Development. In its simplest form, it is a test
automation tool which focuses on comprehensibility more than
it does on validity. Behat provides you with a simple developer-
agnostic language—Gherkin, and then gives you automation
capabilities on top of it. Gherkin’s semantic flexibility is both its
biggest asset and its biggest flaw.

The First Years
In the Gherkin1, and by extension Behat2 world, this:

Scenario: Product costing less than £10 results in \
delivery cost of £3
 Given there is a product with SKU "RS1" and a cost of \
5 in the catalog
 And I am on "/catalog"
 When I press "Add RS1 to the basket"
 And I follow "My Basket"
 Then I should see "Total price: £9"

is as good of a feature as this:
Scenario: Product costing less than £10 results in \
delivery cost of £3
 Given there is a product with SKU "RS1" and a cost \
of 5 in the catalog
 When I add the product with SKU "RS1" from the \
catalog to my basket
 Then the total price of my basket should be £9

However, when you consider the larger implications of
the evolution of these features, the second one is leaps and
bounds better than the first. We will come back to the exact
reasoning later in this article. As with any “evolution,” the
difference is very hard to spot on the first sight, before you
get to more complicated cases.

When I first started developing Behat, its ability to test
applications end-to-end through the browser was the
most attractive feature. It was about time I tried to get
into Test-driven Development, so the simplicity of inter-
face-focused tests became the answer to that drive and
a little obsession of mine. This drive was so entrenched in
my thinking in the first Behat years you couldn’t hear me
talking about Behat without talking about a user interface.
Perhaps the greatest example of this overwhelming focus on
UI automation was how quick after initial introduction of
Behat I created and integrated it with Mink3—the browser
automation tool. Back then, browser automation and Behat
were almost indistinguishable concepts for me. Deep Mink
1 Gherkin: https://cucumber.io/docs/reference
2 Behat: http://behat.org
3 Mink: http://mink.behat.org

integration, default Mink step definitions, and the rest were
the product of that time. But things have changed drastically
since then; I learned how wrong I was about that approach.

I remember when I first heard from my Ruby friend about
this cool new testing tool—Cucumber4. Cucumber and its
integration with Capybara5 seemed like an incredible story
of taking something as complex as TDD and making it as
simple as writing down interactions your users should have
with the website. I started looking for a possibility to test
PHP applications with Cucumber. There were ways, but they
all shared a similar drawback—even if your tests are end-to-
end, you do need to have the ability to quickly and easily
access the application persistence to clean the environment,
or do a test setup. Obviously, this was a fairly tricky prop-
osition for a testing tool written in Ruby. I was essentially
forced to start writing a PHP implementation of Cucumber
—something destined to become Behat.

I love to tell this story because it highlights how our meth-
ods and tools shape our thinking. As I stated previously, my
first years with Behat went under the sign of browser automa-
tion. As the time went on, though, things started to change
rapidly. I like to think the first year in Behat life was all about
me developing Behat and the rest of our years together were
all about Behat developing me. Through development of the
tool I learned the way I was using and understanding the
tool were far from optimal. That’s when I stepped on the
transitional path from being a Behat user to being a Behav-
ior-driven Development practitioner. And with every new
step on this path, browser automation was losing its hold on
me.

4 Cucumber: https://cucumber.io
5 Capybara: https://github.com/jnicklas/capybara

phparch.com
https://cucumber.io/docs/reference
http://behat.org
http://mink.behat.org
https://cucumber.io
https://github.com/jnicklas/capybara

 www.phparch.com \ March 2016 \ 3

Behat: Beyond Browser Automation

Behavior-Driven Development
BDD6 is a methodology coined by Dan North and Chris

Matts. It is a collaborative process created as an outcome
of collaboration between a developer (Dan North) and
a business analyst (Chris Matts). BDD was developed as a
way to bring practice as technical as TDD to the context as
non-technical as traditional business analysis. Dan and Chris
recognized there’s not much difference between how our
code and our business processes go. From their perspective,
every computer program and every business process follow
the same flow:

1. When the action is performed
2. Then, the output is produced
Every method call, every function has the same reason to

its existence— when called (action is performed), it produces
some effect (output is produced) like saving an entity to the
database, checking form validity, or switching DNS records.
Interestingly, every business interaction or a process has
the same effect—every tax form submission, every support
phone call has the same purpose—producing outputs (or
outcomes). The only addition Chris made based on his expe-
rience is that he introduced the context into the mix:

1. Given the context
2. When the action is performed
3. Then, the output is produced

6 BDD: http://behaviourdriven.org

Context was the third and the last important part of this
equation. From this point onwards BDD became a way to
have conversations about systems at different levels of said
systems, both business and technical ones. When given a task
of implementing a feature (e.g. “product delivery cost”) you
would ask, “can you give me an example of this?” and from
this point you would channel the discussion into the Given-
When-Then structure. The structure here is the interesting
part, not the keywords themselves (Given-When-Then).
Sometimes, your examples might lack any of above keywords
yet would still follow the Context-Action-Output structure.
Structure is an interesting bit, not the syntax.

Another great thing about BDD is how devoid it is from
implementation or technical details, which is intentional.
By disconnecting our problem discussion from our solu-
tion finding processes Dan and Chris effectively created
an explicit space for teams to explore the problem domain
enough without being overwhelmed by one single solution.
Database layer, architecture, programming language used,
or even the UI being employed, all these are left outside of
said discussion. That is the lost essence of Behavior-driven
Development.

Gherkin and Browser Automation
When you create something as seminal as BDD, people

notice and start following. Technical people tend to follow
with processes and tools. Eventually, Given-When-Then
spawned the language-agnostic specification format called
Gherkin, and a little later the tool employing the format for
test automation—Cucumber. Aslak, the creator of Cucumber,
famously said Cucumber is the world’s most misunderstood
automation tool (because of the lack of interest in underlying
principles). As you probably guessed from the beginning of
this article, I can proudly say I was one of the first people
who completely misunderstood the underlying principles of
Cucumber.

Gherkin made it very simple to provide an automa-
tion layer for your application without much knowledge of
programming languages, design, testing, or even develop-
ment practices. This fact alone attracted thousands of people
to both Cucumber and Behat as test automation tools devoid
of a need to worry much about good practices of design
or automation. Easiness of testing brought by these tools
suddenly meant thousands of people who otherwise didn’t
know where to start with automation now had a very clear
path—installing a tool and writing a “BDD test” in Gherkin.
Sadly, as with anything “very simple” and “trivial,” crucial
drawbacks are hidden in using Behat and Cucumber this
way.

I worked on tens of projects employing both BDD as a
practice and Behat as an automation tool and many of them
shared the same problem— something which seemed like a
good idea at the beginning of a project ended up being a huge
block towards the middle of it. One such great idea which
turned bad was using your Gherkin features primarily for

phparch.com
http://behaviourdriven.org
http://siteground.com/phpfly

4 \ March 2016 \ www.phparch.com

Behat: Beyond Browser Automation

browser automation. It is easy to see why using Gherkin for
browser automation might seem like a great idea at the begin-
ning; no architecture implications, no test setup, or technical
skills required. But why does this turn out to be a bad idea
in the long run? In my experience there are two reasons why
browser automation kills your test suite and BDD practice in
general:

1. User interface tests are notoriously slow and brittle.
2. Scenarios focused on user interface are tightly coupled

to a particular implementation.
In the following sections, I’ll address each of these points

individually and try to explain why are they such a big prob-
lem for your usage of Behat.

User Interface Tests Are Notoriously
Slow and Brittle

Your test is as stable as the least stable layer of the stack
it is going through. Your test is as fast as the slowest layer
in the stack it is going through. Let’s say we are describing
the delivery cost calculation for a particular a basket. Let’s
also assume we are using extensively rich UI driven by AJAX
and the discount logic is a combination of core objects and
services. In this case, each of our end-to-end Behat tests will
execute in the following manner:

1. Behat executes a single step in the scenario.
2. The step sends a command to Selenium server.
3. Selenium server sends a command to the JavaScript

block injected into the browser.
4. JavaScript block injected into the browser forces an

operation inside the browser window.
5. Browser performs and operation forcing it to send an

AJAX request to the server.
6. Server receives a request and parses it into a controller

call.
7. Controller delegates the call to the combination of

core objects and services.
8. Core objects and services do calculation and return

the result back to the controller.
9. Controller packs the result into an AJAX response and

sends it back to the browser.
10. Browser receives the response and updates the UI.
11. UI update forces JavaScript block injected into the

browser to notify Selenium server.
12. Selenium server notifies back the step in your Scenar-

io.
13. Behat goes to the second step in your Scenario.
This is what happens every time you call followLink()

in your step definition, sometimes tens of times per step
definition. In real world terms, this is somewhere close to
a 1s of your test execution time. The interesting part begins
when you start asking the question: out of this entire stack,
what is the single most important thing for the “delivery

cost calculation” test you wrote? It’s step eight: “Core objects
and services do calculation and return the result back to the
controller.” Everything else is an indirection necessary to
render the interface and capture the output from the user
securely. User input/output must be tested, but should it be
tested together with the “bundled discount price for all the
products in a basket” logic? That’s quite a question.

Effectiveness of tests as with anything else in the world is
defined by the costs and values they add to the process. What
is the cost of a test? It’s the time it takes to write and main-
tain a test! What is the value of a test? It is two-fold; part
of it is about helping you design the right solution correct-
ly and another part is about protecting the right solution
from degradation or breakage. Let’s look closely at how our
13-layers delivery cost test performs in terms of its cost and
value.

First, UI tests are notoriously cheap to implement the first
time around, but what I am interested in is how cheap are
they to maintain. How often do you think your business will
ask you to change the delivery cost calculations? My guess
would be every time business rethinks its business model,
operations and marketing strategy, in other words—not
very often. How often do you think you will need to update
the UI? Based on my experience, every time a new major JS
framework is released. Likely, every couple of minutes. Jokes
aside, the rate of UI change is obviously faster than the rate
of change in the business logic, by a huge margin! What
do you think happens when each element of your business
logic is tested through UI? You are artificially linking rates
of change for both, which results in the smallest common
denominator— every time your UX team moves the basket
controls around the UI you are forced to fix all your tests,
even the ones testing the calculations which didn’t change a
single bit. That results in a test suite which is extremely costly
to maintain, because you are effectively forced to update the
majority of your test suite every time UI is updated. And, UI
is frequently updated. Otherwise, your business will end up
being far behind its competition.

OK, entangling UI and core business logic inside your tests
drastically increases the cost of maintaining your test suite,
so what? Surely the value these end-to-end tests provide us
outweigh the cost. Except they don’t! Remember, the value
your tests are supposed to deliver is all about design support
and reduction of breakages. So how do your UI-focused tests
help with the core object design? They don’t, because all the
business logic is now hidden behind levels of indirection
such as UI and persistence. Even more, all the information
your Gherkin scenarios are obsessed with is how a particular
button is called or where is it located on the page, not how the
discount calculation is supposed to work.

How about a reduction in breakages? Ask yourself, when
was the last time your UI test highlighted that you broke the
logic rather than the fact you broke the test by changing the
CSS class of a button. Every single time your test fails with-
out the underlying logic (the one being actually tested) being

phparch.com

 www.phparch.com \ March 2016 \ 5

Behat: Beyond Browser Automation

broken, you pay a high price; you and your team loose trust
in your test suite, one bit at a time. Your test suite becomes
less and less reliable every minute. Maintaining the test suite
stops being a useful activity to support the team’s progress
and starts being a chore.

I’ve observed many teams struggle when their test suite
“suddenly” started taking 30+ minutes to execute and is now
constantly residing in a red state. A test suite which takes
longer than 30 minutes to run is a test suite no one wants to
run or spend time fixing. These teams are often asking me
for a single “get out of a jail card”—Page Objects or any other
obscure, non-obvious testing pattern which would imme-
diately relieve them from all their pain. The truth is much
harder to swallow. In the same way it took them months to
get into the situation they’re in, it will take them weeks or
even months to get out. And, the reason for that is the second
biggest drawback of UI-obsessed Gherkin features—they are
very inflexible towards their implementation.

UI Focused Scenarios are Inflexible to
Implementation

The biggest benefit of using Gherkin is it allows you to
separate the problem definition from the implementation,
or even to a certain extent, testing. Properly written exam-
ples give you an incredible amount of flexibility around how
you’re going to test or implement the feature. In contrast,
poorly written, obsessed with user interface examples are
extremely tricky to implement or test in any other way than
through the user interface.

Let’s look at the first example from the beginning of this
article:
Scenario: Product costing less than £10 results in \
delivery cost of £3
 Given there is a product with SKU "RS1" and a cost of \
5 in the catalog
 When I add the product with SKU "RS1" from the \
catalog to my basket
 Then the total price of my basket should be £9

Do you think we can test this feature through the UI?
Absolutely, we can. Do you think we are forced to? Can
we test this exact scenario directly against the core domain
objects, exercising them closer to the logic we care about?
Yes, we can! The magic of this style of Gherkin scenarios is
they allow us flexibility in their implementation. You can,
for example, start by testing and implementing this partic-
ular scenario through UI with Mink. Then, when your test
suite starts reaching towards a “couple of minutes per suite
execution” barrier, you can go back and refactor your step
definitions for this scenario to go through the business logic,
separately from the infrastructure or the framework. And all
without a single change to the scenario itself!

Now how about this example instead:
Scenario: Product costing less than £10 results in \
delivery cost of £3 Given there is a product with SKU \
"RS1" and a cost of 5 in the catalog
 And I am on "/catalog"
 When I press "Add RS1 to the basket"
 And I follow "My Basket"
 Then I should see "Total price: £9"

Can we test this scenario against anything but UI? No,
we can’t. Even more worrisome is it is hard to understand
what this scenario is supposed to actually test—all we see
here is buttons and forms. It is famously tricky to extract the
business essence from your UI scenarios. By writing your
scenarios in this way you are effectively locking yourself out
of other options for testing this specific feature later.

UI focused scenarios are notoriously inflexible to imple-
mentation because they are obsessed with it—pages, nodes,
buttons, labels, and forms are spilled all over them. The more
UI details your scenarios have, the harder it is to spot the
essence of what is it you’re actually trying to demonstrate
here with this example—a product discount calculation.

Getting out of Jail
Imagine you’re one of hundreds of teams across the world

who use Behat. Let’s also assume you were working on your
project for quite some time and now you have hundreds
of UI-obsessed scenarios and a test suite which takes 30
minutes or more to execute and is constantly broken because
the Selenium is not as stable as you expect it to be. How do
you get out of this?

You, and many before you (including me), skipped the
most crucial part of the tool usage—the set of principles it
is built upon. Remember that definition of Behavior-driven
Development I gave way back? Remember the conversation
in the form of examples, devoid of any particular implemen-
tation as the central piece of the BDD puzzle? Well, guess
what, Behat is a BDD tool and you skipped (as did I on multi-
ple occasions) the most important part of BDD: exploration
of the problem. It is time we pay our due!

The first step in getting out of mess is, unsurprisingly, the
same for any kind of software design problem—refactoring,
except this time we’re not talking about refactoring of our
code, we’re talking about refactoring of our understanding.
The first thing you do is you find the most important feature
file you have at this particular moment and you finally start
having the conversation with your stakeholders. You come to
your business experts and ask them for help; say you feel you
overcomplicated some of the crucial parts of the application
and it is now required for you to understand what this feature
actually means:
Scenario: Product costing less than £10 results in \
delivery cost of £3
 Given there is a product with SKU "RS1" and a cost of \
£5 in the catalog
 And I am on "/catalog"
 When I press "Add RS1 to the basket"
 And I follow "My Basket"
 Then I should see "Total price: £9"

phparch.com

6 \ March 2016 \ www.phparch.com

Behat: Beyond Browser Automation

Liz Keogh, a fellow BDD practitioner, uses pixies as a way
to remove the implementation detail from the scenarios.
What if there were no backend, frontend, PHP, JavaScript or
else behind the scene? What if all your feature did was to send
a written request to a bunch of pixies and they tried to fulfil it
as hard as they could without any technical skills whatsoever.
If you look at every single feature in your application as a
black box with a bunch of magic inside (including UI), you
will find very quickly it isn’t hard to focus on the essence of
what business wants from your application. You will quickly
find that what the business you serve cares about is not this:
Scenario: Product costing less than £10 results in \
delivery cost of £3
 Given there is a product with SKU "RS1" and a cost of \
£5 in the catalog
 And I am on "/catalog"
 When I press "Add RS1 to the basket"
 And I follow "My Basket"
 Then I should see "Total price: £9"

It is actually closer to this:
Scenario: Product costing less than £10 results in \
delivery cost of £3
 Given there is a product with SKU "RS1" and a cost of \
£5 in the catalog
 When I add the product with SKU "RS1" from the \
catalog to my basket
 Then the total price of my basket should be £9

When going through this exercise together with your
stakeholders, you quickly find the outcome is not a particu-
larly better way to test your application or design your
software. You will find the outcome is an approach which
enables you to chose from more than one option. Do I hate
browser automation in general or Mink in particular (even
though I wrote the damn thing myself)? Of course I don’t.
What I do hate is the situation when the only option for your
team going forward is the browser automation. Browser
automation must be a deliberate and well-considered choice
for every single scenario you develop. What it shouldn’t be is
the default for every single one of your tests.

 When not blogging Konstantin
Kudryashov is a prominent public
speaker, organiser of BDD London
meetups, the creator of Behat, Mink,
co-creator of PhpSpec and leads the
Behaviour-Driven Development
(BDD) practice at Inviqa, a leading
digital consultancy in London. As a
communication coach, he has helped

teams in many organisations bridge the gap between business
and IT using Agile processes and development practices like
Scrum, Kanban, BDD, TDD, Collaborative Product Owner-
ship and Deliberate Discovery. @everzet

Want more articles
like this one?

phparch.com
http://twitter.com/everzet
http://automattic.com/jobs

magazine

books

conferences

training

www.phparch.com

Keep your skills current and
stay on top of the latest PHP
news and best practices by
reading each new issue of
php[architect], jam-packed
with articles.
Learn more every month about
frameworks, security, ecommerce,
databases, scalability, migration, API
integration, devops, cloud services,
business development, content
management systems, and the PHP
community.

We also offer digital and print+digital
subscriptions starting at $49/year.

Get the complete issue
for only $6!

Want more articles
like this one?

PHP Application Hosting

p
hp

[architect] m
ag

azine D
ecem

b
er 2016

Scru
tin

izin
g

 Yo
u

r Te
sts

www.phparch.com
December 2016VOLUME 15 - Issue 12

Decoupled Blocks With Drupal 8 and JavaScript Frameworks
Abstracting HTTP Clients in PHP

Education Station:Let’s Build a Chatbot in PHP
Community Corner:Focus on What We Have in Common

Leveling Up:
Building Better Bug Reports

Security Corner:Keeping a Secret
fi nally{}:
The Year of ???

Behat: Beyond Browser AutomationStrangler Pattern, Part Three: the Rhythm of Test-Driven Development

Volum
e 15 Issue 12

Scrutinizing Your Tests
ALSO INSIDE

http://www.phparch.com/wp-content/themes/phpa/helpers/magazine/buy-single-issue.php?2016-2,December

