


PHP[TEK] 2017
The Premier PHP Conference 

12th Annual Edition
May 24-26 — ATLANTA

Keynote Speakers:

Gemma Anible 
WonderProxy

Keith Adams 
Slack

Alena Holligan 
Treehouse

Larry Garfield 
Platform.sh

Mitch Trale 
PucaTrade

Sponsored By: Save $200 on tickets 
Buy before Feb 18th 

tek.phparch.com

PHP Application Hosting

mailto:careers@nexcess.net


PHP[TEK] 2017
The Premier PHP Conference 

12th Annual Edition
May 24-26 — ATLANTA

Keynote Speakers:

Gemma Anible 
WonderProxy

Keith Adams 
Slack

Alena Holligan 
Treehouse

Larry Garfield  
Platform.sh

Mitch Trale 
PucaTrade

Sponsored By: Save $200 on tickets 
Buy before Feb 18th 

tek.phparch.com

https://tek.phparch.com


Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson
Technical Editors:  
Oscar Merida

Subscriptions
Print, digital, and corporate subscriptions are available. Visit 
https://www.phparch.com/magazine to subscribe or email 
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus, 
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by: 
musketeers.me, LLC 
201 Adams Avenue 
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the 
accuracy of the contents of this magazine, including all 
associated source code, listings and figures, the publisher 
assumes no responsibilities with regards of use of the 
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of 
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com 
Editorial: editors@phparch.com 

Print ISSN 1709-7169 
Digital ISSN 2375-3544

Copyright © 2017—musketeers.me, LLC 
All Rights Reserved

JANUARY 2017
Volume 16 - Issue   1

2 Blueprints for Success

31 Monkey Patching Your 
Way to Testing Nirvana
Matthew Setter

35 Understanding Objects
David Stockton

40 Uncle Cal’s Thank You Letter
Cal Evans

42 New Year’s Security 
Resolutions
Chris Cornutt

44 December Happenings

48 On Being a Polyglot
Eli White

Columns

Blueprints for Success
Features
3 Capturing an API’s Behavior 

With Behat
Michael Heap

10 Writing Better Code with Four 
Patterns
Joseph Maxwell

16 Mirror, Mirror On the Wall: 
Building a New PHP Reflection 
Library
James Titcumb

22 Strangler Pattern, Part 4: 
Unit Test Design with Mockery
Edward Barnard

https://www.phparch.com/magazine
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me


 www.phparch.com  \  January 2017  \  23

FEATURE

Strangler Pattern, Part 4: 
Unit Test Design with 
Mockery
Edward Barnard

When your PHP code must work through other classes, 
functions, APIs, and databases, those dependencies become 
a formidable challenge to writing your unit tests. You may find 
yourself spending an hour getting structures set up for a three-
line test. Things can easily get out of hand.

In this article, we introduce Mockery, a drop-in replacement for PHPUnit’s built-in mocking 
library. We introduce and demonstrate strategies to use in keeping your unit test development 
sane. We cover spies, mocks, and expectations.

We are using the Strangler Pattern 
as our guide for scaling-out our web 
application at InboxDollars. Our 
approach is to offload some of the 
processing. We’re moving some of the 
workload away from the member-fac-
ing web servers to a back-end system 
and planning for a 10X increase in 
member views.

The Strangler Pattern allows us 
to scale out with a hybrid architec-
ture. Our monolithic web application 
continues to run as is. We are design-
ing our new back-end processing 
resources as microservices. We put 
this together as a distributed messag-
ing system called BATS (Batch System) 
using RabbitMQ1. We chose Rabbit-
MQ based on developer advice and 
because it has enterprise-level support.

Let’s write some code; remember, 
we’re doing Test-driven Development 
(TDD).

Being able to start and stop things 
seems like a good place to begin. But 
first, we need the things to start and 
stop. Those things run by receiving 
messages via RabbitMQ. Thus, we 
need to write the code which receives 
messages. To receive messages, we 
need to write the code which connects 
to RabbitMQ which works with 

1 RabbitMQ: https://www.rabbitmq.com

exchanges and queues. To receive 
messages we need to configure the 
exchanges, create the queues, and bind 
the queue to the exchange.

To have a message to receive, we 
first need to put the message into the 
exchange. For RabbitMQ to be able to 
route the message from the exchange 
to the queue, our design requires a 
consumer first to define the queue.

Where do we start? That’s where 
Mockery2 comes in. With Mockery, 
it doesn’t matter where you start or 
what you attack next. You can start 
anywhere!

Mockery creates mock objects. 
Wikipedia3 does not help much:

Mock objects are simulated objects 
that mimic the behavior of real 
objects in controlled ways.

While true, it doesn’t explain the 
magic. With mock objects, you can 
focus on one piece of development 
and ignore all of those other issues. In 
any real-world project we will always 
have countless things to deal with 
at once, the moment our code first 

2 Mockery: 
https://github.com/padraic/mockery

3 Wikipedia:  
https://en.wikipedia.org/wiki/Mock_object

hits production. The ability to start 
anywhere with Mockery, and to focus 
on one thing at a time, is quite magical.

Since we are writing code that works 
with RabbitMQ, we need to deal with 
connections to RabbitMQ, commu-
nication channels, exchanges, queues, 
routing keys, bindings, and so on. At 
first glance, this means we can’t test 
any code until we write all the code.

With Mockery, it’s easy to simply 
mock (simulate or fake) everything 
else and focus on writing the code for 
one thing. Simply pick a spot and start 
developing your tests and code.

In Part Three: The Rhythm of 
Test-Driven Development4 we used 
Learning Tests to learn how to use a 
third-party library in whatever way we 
intend to use it. We need to learn both 
Mockery and RabbitMQ. We won’t 
develop the learning tests here, but you 
should note:

4 Part Three: The Rhythm of Test-Driven 
Development: 
 https://www.phparch.com/magazine/

phparch.com
https://www.rabbitmq.com
https://github.com/padraic/mockery
https://en.wikipedia.org/wiki/Mock_object
https://www.phparch.com/magazine/


24  \  January 2017   \  www.phparch.com

Strangler Pattern, Part 4:Unit Test Design with Mockery 

• RabbitMQ has an excellent set of tutorials online: 
http://www.rabbitmq.com/getstarted.html

• Mockery, likewise, has excellent documentation online: 
http://docs.mockery.io/en/latest/

• Jeffrey Way’s Laravel Testing Decoded5 has a chapter on 
Mockery. It’s the best Mockery tutorial I’ve ever encoun-
tered, and you don’t need to know anything about Laravel 
to follow it. The book as a whole is about TDD using 
Laravel
Julie Andrews showed the way half a century ago in the 

movie Sound of Music: Let’s start at the very beginning—a 
very good place to start.

When you read, you begin with A-B-C. When you sing, 
you begin with do-re-mi.

What does this mean when building messaging systems?
1. To process a message, you need to receive the message.
2. To receive the message, the message must have been 

sent.
3. To send the message, you need to create the message.
4. When creating, sending, and receiving the message, it 

will calm the chaos if you have a predictable message 
format.

In other words, we need to begin by creating a Canonical 
Data Model:6

How can you minimize dependencies when integrating 
applications that use different data formats? Design a 
Canonical Data Model that is independent from any 
specific application. Require each application to produce 
and consume messages in this common format.

Sure, all we are really doing is passing arrays around as 
a JSON-encoded string. What we proclaim we are doing 
is constructing messages using a language-independent 
Canonical Data Model which can communicate with any 
system able to connect to our RabbitMQ server.

Since our development team already uses JSON for data 
transmission in various contexts, our Canonical Data Model 
is merely formalizing our existing practice.

BATS Message Class
To me, it makes sense to separate metadata from the 

payload data. For example, suppose we are crediting a 
member for completing some action on the website:

• The accounting information would be contained in the 
message payload

• Timestamps, message identifier, routing/origin 

5 Jeffrey Way’s Laravel Testing Decoded: 
https://www.amazon.com/dp/B00D8O19O6

6 Canonical Data Model:: 
https://www.amazon.com/dp/0321200683/

information, etc., could be metadata
All of our developers are familiar with the “head” and 

“body” sections of an HTML page. Let’s construct a class, 
BatsMessage, which follows a similar idea, able to store “head” 
(metadata) and “body” (payload) sections. The class can seri-
alize and unserialize its contents to create the JSON-encoded 
string for communication via RabbitMQ.

New Project
We begin coding by creating a new project. Create the 

new project DemoMockery the same way we did in Part Three: 
Rhythm of TDD

1. Clone the skeleton package: 
git clone git@github.com:thephpleague/skeleton.git.

2. Rename the folder: mv skeleton DemoMockery.
3. Then, tell PhpStorm to “create a new project from 

existing files.”
4. Run the prefill.php script to customize your packag-

es with author name, etc.: php prefill.php.
5. Remove the prefill.php script as instructed.
6. To install Mockery and its dependencies run: 

composer require ---dev mockery/mockery
7. Get a clean run from PHPUnit. In my case, to run it 

on my Mac, I invoke it via PhpStorm with a special 
php.ini file to load the xdebug extension.

Your initial run should report OK (1 test, 1 assertion). 
Delete src/SkeletonClass.php and tests/ExampleTest.php, 
but note the namespace and extended class.

First Test
We begin by making sure we can construct a class of the 

correct type as in Listing 1.

Run the tests. As expected, we see:

PHP Fatal error: Class 'ewbarnard\DemoMockery\BatsMessage' not 
found

LISTING 1
01. <?php
02. namespace ewbarnard\DemoMockery;
03. 
04. class BatsMessageTest extends \PHPUnit_Framework_TestCase
05. {
06.    public function testConstructor() {
07.       $target = new BatsMessage;
08.       static::assertInstanceOf(BatsMessage::class, $target);
09.    }
10. }

phparch.com
http://www.rabbitmq.com/getstarted.html
http://docs.mockery.io/en/latest/
https://www.amazon.com/dp/B00D8O19O6
https://www.amazon.com/dp/0321200683/


 www.phparch.com  \  January 2017  \  25

Strangler Pattern, Part 4:Unit Test Design with Mockery 

Create the class:

<?php 
 
namespace ewbarnard\DemoMockery; 
 
class BatsMessage { 
}

We’re green, that is, all tests pass: OK (1 test, 1 assertion). 
I nearly always start out a test suite by checking the construc-
tor. This step ensures I have my tests hooked up correctly. 
Always observe the test failing before making it pass. This 
guarantees the test really has run.

Explore the API
The head() method should return an array, as should 

body(). Write the tests, and write the simplest thing possible 
to pass the test.

public function testHeadReturnsArray() { 
   $target = new BatsMessage; 
   $head = $target->head(); 
   static::assertInternalType('array', $head); 
}

The simplest thing possible to pass the test:

public function head() { 
   return []; 
}

The body() test and function 

are nearly identical (at this point). With all tests passing, we 
can refactor the test to remove duplication (see Listing 2).

Now you can better see why I always begin a test suite 
with the testConstructor() test. It’s my safety net ensuring I 
didn’t break anything when refactoring the test setup.

We continue to develop and flesh out the BatsMessage 
class. It’s very rapid, and we won’t show it here.

What’s the point? BatsMessage is a small class. It doesn’t 
do much except store and serialize a couple of arrays. Does it 
merit writing an entire suite of unit tests?

Yes it does! We are building a distributed messaging 
system. The message itself is, obviously, central to everything. 
The message structure even has a pattern name, Canonical 
Data Model. So, yes, this class does merit the unit-test treat-
ment.

The unit tests also serve as “executable documentation.” If 
anyone needs to integrate with our BATS system, they can 
examine the BatsMessage test suite to easily understand the 
developer’s original intent. TDD mean all intended capabil-
ities are demonstrated by the test suite. Finally, if anything 
happens which breaks the BatsMessage class, this test suite 
will inform us the next time it’s run.

Four-Phase Test
xUnit Test Patterns: Refactoring Test Code7 by Gerard 

Meszaros (p. 358) explains:

How do we structure our test logic to make what we are 
testing obvious? We structure each test with four distinct 
parts executed in sequence:

1. Setup
2. Exercise
3. Verify
4. Teardown

Meszaros continues:

We should avoid the temptation to test as much function-
ality as possible in a single Test Method [p. 348] because 
that can result in Obscure Tests [p. 186]. In fact, it is pref-
erable to have many small Single-Condition Tests [p. 45]. 
Using comments to mark the phases of a Four-Phase Test 
is a good source of self-discipline, in that it makes it very 
obvious when our tests are not Single-Condition Tests. 
 
It will be self-evident if we have multiple exercise SUT 
(system under test) phases separated by result verification 
phases or if we have interspersed fixture setup and exer-
cise SUT phases. Sure, these tests may work—but they 
will provide less Defect Localization [p. 22] than if we 
have a bunch of independent Single-Condition Tests.

7 xUnit Test Patterns: Refactoring Test Code: 
https://www.amazon.com/dp/0131495054

LISTING 2
01. <?php namespace ewbarnard\DemoMockery;
02. 
03. class BatsMessageTest
04.    extends \PHPUnit_Framework_TestCase
05. {
06.    /** @var BatsMessage */
07.    protected $target;
08. 
09.    public function setUp() {
10.       $this->target = new BatsMessage;
11.    }
12. 
13.    public function testConstructor() {
14.       static::assertInstanceOf(
15.          BatsMessage::class, $this->target
16.       );
17.    }
18. 
19.    public function testHeadReturnsArray() {
20.       $head = $this->target->head();
21.       static::assertInternalType('array', $head);
22.    }
23. 
24.    public function testBodyReturnsArray() {
25.       $body = $this->target->body();
26.       static::assertInternalType('array', $body);
27.    }
28. }

phparch.com
https://www.amazon.com/dp/0131495054


26  \  January 2017   \  www.phparch.com

Strangler Pattern, Part 4:Unit Test Design with Mockery 

The sequence hasn’t been obvious in our examples thus far, 
but, if you know the pattern you can see this pattern present 
in all tests.

Spies And Mockery
Real code has interdependencies. Sure, when “we start at 

the very beginning,” we have no dependencies. That’s easy. 
But, later code does have dependencies. To continue writ-
ing tests to exercise our code we use spies and mock objects. 
We’ll look at the code first and think backward to how we 
might have tested it. And then, don’t worry, we will test it.

For this article we are focusing on a single interdepen-
dency, namely the connection between the CakePHP 3 
framework and our BATS code. The connection (that is, 
the interdependency) is in BatsCommon. BatsCommon is 
an abstract base class containing most of the “glue” code 
between BATS and RabbitMQ. We’re not showing any of 
the “glue” here. 
 
What is a spy? A spy allows you to observe or verify the 
internal state of the SUT (system under test). In our 
example, the spy will be a child class which spies on its 
parent class. The child (spy) class is test code, and the 
parent (real) class is production code. 
 
What is a mock object? A mock object also lets you 
observe or verify the internal state of the SUT. The 
difference is the mock object lets you to set up your expec-
tations before the test, and the mock object verifies that 
each expectation was met. The Spy, by contrast, opens up 
a backdoor into your production code, allowing your tests 
to poke around as needed.

CakePHP 3 supports “verbose” output8 which is only 
sent to the console when --verbose was specified on the 
command line, with its Shell::verbose() method.

Most of the BATS library is “plain PHP,” that is, not specifi-
cally part of the CakePHP ecosystem. It’s helpful to hook into 
CakePHP’s console output functions, so I built this into the 
base class BatsCommon (see Listing 3). The caller passes $this 
into the BatsCommon constructor which provides us access to 
verbose().

Consider the list of tests which should have gotten us here:
• If nothing is passed into the constructor, the set of 

parameters is an empty array.
• Anything passed into the constructor is available as an 

array key of $params property.
• If caller is passed in, it is available as $this->caller.
• verbose() must be called with at least one parameter.
• The second verbose() parameter defaults to integer 1.
• When caller is passed into the constructor, verbose 

calls it with both parameters.

8 “verbose” output: http://phpa.me/cake-console-output

• When caller is not passed into the constructor, 
verbose does not call caller.

First Test
Our first test, shown in Listing 4, checks the constructor. 

We’ll use setUp() and use testConstructor() to ensure 
setUp() was indeed executed correctly. This becomes more 
important as we switch to using a spy.

All tests pass. How do we test that parameters are correct-
ly passed into the constructor, given they are stored in a 
protected property? We use a spy, see Listing 5. Place the spy 
in the test folder, not in the src folder. It is not part of your 
production code.

LISTING 3
01. <?php
02. namespace ewbarnard\DemoMockery;
03. 
04. class BatsCommon
05. {
06.    protected $parms = [];
07. 
08.    /** @var mixed */
09.    protected $caller;
10. 
11.    public function __construct(array $parms = []) {
12.       $this->parms = $parms;
13.       if (array_key_exists('caller', $parms)) {
14.          $this->caller = $parms['caller'];
15.       }
16.    }
17. 
18.    protected function verbose($message, $lines = 1) {
19.       if ($this->caller) {
20.          $this->caller->verbose($message, $lines);
21.       }
22.    }
23. }

LISTING 4
01. <?php
02. namespace ewbarnard\DemoMockery;
03. 
04. class BatsCommonTest extends \PHPUnit_Framework_TestCase
05. {
06. 
07.    /** @var BatsCommon */
08.    protected $target;
09. 
10.    public function setUp() {
11.       $this->target = new BatsCommon();
12.    }
13. 
14.    public function testConstructor() {
15.       static::assertInstanceOf(
16.          BatsCommon::class, $this->target
17.       );
18.    }
19. }

phparch.com
http://phpa.me/cake-console-output


 www.phparch.com  \  January 2017  \  27

Strangler Pattern, Part 4:Unit Test Design with Mockery 

Test Spy [Meszaros, p. 538] 
 
How do we implement Behavior Verification? How 
can we verify logic independently when it has indirect 
outputs to other software components? 
 
We use a Test Double to capture the indirect output calls 
made to another component by the SUT for later verifi-
cation by the test… A key indication for using a Test Spy 
is having an Untested Requirement [p. 268] caused by an 
inability to observe the side effects of invoking methods 
on the SUT. Test Spies are a natural and intuitive way… 
that gives the Test Method access to the values recorded 
during the SUT execution.

Now, let’s test the parameter-passing mechanism.

public function testParms() { 
   $expected = ['a' => 'b', 'c' => 3]; 
   $this->target = new BatsCommonSpy($expected); 
   static::assertSame($expected, 
                      $this->target->parms()); 
}

All tests pass. We have duplication; it’s time to refactor as 
shown in Listing 6. Note, it’s just as important to refactor 
the tests and keep them as clean as the production code. It’s 
important that future developers be able to understand your 
tests as quickly and easily as possible.

All tests continue to pass.

Mock Object
You won’t be surprised to learn that mock object [Meszaros, 

p. 544] is one of the xUnit Test Patterns. Don’t be put off by 
the book’s 947 pages. You’ll “level up” your unit-testing expe-
rience every time you read a page or even a paragraph out of 
the book.

It’s important to keep our test cases organized. How do we 
do that? There’s a test pattern for that:

Testcase Class per Fixture [Meszaros, p. 631] 
 
How do we organize our Test Methods onto Testcase 
Classes? 
 
We organize Test Methods into Testcase Classes based on 
commonality of the test fixture. 
 
As the number of Test Methods grows, we need to decide 
on which Testcase Class [p. 373] to put each Test Method. 
Our choice of a test organization strategy affects how 
easily we can get a “big picture” view of our tests. It also 
affects our choice of a fixture setup strategy. 
 
Using a Testcase Class per Fixture lets us take advantage 
of the Implicit Setup [p. 424] mechanism provided by the 
Test Automation Framework [page 298].

In other words, when your test setup changes, start a new 
test class (and file). The Implicit Setup mentioned above is 
simply PHPUnit’s built-in setUp() function.

Our next test requires we set up a mock object. This is our 
clue that it’s time to create a new test class.

Our list of tests:
• When caller is passed into the constructor, verbose 

calls it with both parameters.
• When caller is not passed into the constructor, 

verbose does not call caller.
Given verbose() is a protected method, we need to 

enhance our spy:

public function verboseSpy($message, $lines = 1) { 
   $this->verbose($message, $lines); 
}

LISTING 5
01. <?php
02. namespace ewbarnard\DemoMockery;
03. 
04. class BatsCommonSpy extends BatsCommon
05. {
06.    public function parms() {
07.       return $this->parms;
08.    }
09. }

LISTING 6
01. <?php
02. namespace ewbarnard\DemoMockery;
03. 
04. class BatsCommonTest extends \PHPUnit_Framework_TestCase
05. {
06.    /** @var BatsCommonSpy */
07.    protected $target;
08. 
09.    public function setUp() {
10.       $this->build();
11.    }
12. 
13.    protected function build(array $parms = []) {
14.       $this->target = new BatsCommonSpy($parms);
15.    }
16. 
17.    public function testConstructor() {
18.       static::assertInstanceOf(
19.          BatsCommon::class, $this->target
20.       );
21.    }
22. 
23.    public function testParms() {
24.       $expected = ['a' => 'b', 'c' => 3];
25.       $this->build($expected);
26.       static::assertSame($expected, $this->target->parms());
27.    }
28. }

phparch.com


28  \  January 2017   \  www.phparch.com

Strangler Pattern, Part 4:Unit Test Design with Mockery 

Our tests depend on some assumptions. Be sure the follow-
ing tests remain on our list (or have already been written):

• If caller is passed in, it is available as $this->caller.
• If caller is not passed in, $this->caller is null.
• verbose() must be called with at least one parameter.
• The second verbose() parameter defaults to integer 1.
One great way to ensure those tests aren’t forgotten is to 

write empty tests and mark them incomplete. For example 
(string split for publication):

public function testCallerNull() { 
   static::markTestIncomplete('If caller not passed ' 
      . 'in to constructor, $this->caller remains null'); 
}

When we run the tests we have the reminder:

There was 1 incomplete test: 
 
1) ewbarnard\DemoMockery\BatsCommonTest::testCallerNull 
If caller not passed in to constructor, $this->caller remains 
null 
 
OK, but incomplete, skipped, or risky tests! 
Tests: 6, Assertions: 5, Incomplete: 1.

We can also mark tests as skipped. Use skipped when tests 
should not run given the current environment. For example, 
a framework’s MySQL tests should only run when MySQL 
is available. Otherwise, they should report themselves as 
skipped.

The second of our tests is easy. If caller was not passed 
to the constructor, $this->caller should not be referenced 
as an object when calling verbose(). So, we simply call 
verbose(). If nothing blows up, the test passes.

public function testNoVerbose() { 
   $this->target->verboseSpy('test'); 
   static::assertTrue(TRUE, 'test blows up otherwise'); 
}

The test passes. Now we need to create a Mock Object 
[Meszaros, p. 544]:

How do we implement Behavior Verification for indirect 
outputs of the SUT? How can we verify logic inde-
pendently when it depends on indirect inputs from other 
software components? 
 
We replace an object on which the SUT depends on with 
a test-specific object that verifies it is being used correctly 
by the SUT.

The Mockery package makes it ridiculously easy to replace 
dependencies and verify the dependencies were exercised as 
expected.

Create a new empty test class as in Listing 7 which correct-
ly uses Mockery.

When you use Mockery, remember to include a tearDown() 

method with m::close(). Mockery runs its verifications 
during m::close(). Without that call, you’re not testing what 
you thought you were. I use Mockery as m as a convenience.

All tests pass. Here is what the above code does:
1. M::mock() creates a mock object. We don’t care about 

its class. We could have called m::mock('BatsCommon') 
to mock the BatsCommon class. PHP must be able to 
find the class for Mockery to mock it. makePartial() 
tells Mockery to only mock those methods named in 
the upcoming “expectations.” Any other method calls 
pass through to the “real” class being mocked.

2. Sets expectations. This mocked object should 
get verbose() method called exactly once as 
verbose('test', 5). The test tearDown() will verify 
all expectations were met.

3. Sets the parameter list we will be passing to our 
BatsCommon object constructor.

4. Creates our BatsCommon object.
5. Calls verbose(). It’s a protected method, so we have 

the spy call the class for us.
The TearDown method calls m::close() which verifies that 

all expectations were met. One thing you should note: if the 
expectations are not met, the PHPUnit output can be confus-
ing. Change the call from $target->verboseSpy('test', 5); 
to $target->verboseSpy('test', 6);. In other words, call 
verbose() with the second parameter being 6 rather than 5. 
PHPUnit spews the following:

LISTING 7
01. <?php
02. namespace ewbarnard\DemoMockery;
03. 
04. use Mockery as m;
05. 
06. class BatsVerboseTest extends \PHPUnit_Framework_
TestCase
07. {
08.    public function tearDown() {
09.       m::close();
10.    }
11. }

LISTING 8
01. public function testVerbose() {
02.    $caller = m::mock()->makePartial();
03.    $caller->shouldReceive('verbose')
04.           ->once()
05.           ->withArgs(['test', 5])
06.    ;
07.    $parms = ['caller' => $caller];
08.    $target = new BatsCommonSpy($parms);
09.    $target->verboseSpy('test', 5);
10. }

phparch.com


 www.phparch.com  \  January 2017  \  29

Strangler Pattern, Part 4:Unit Test Design with Mockery 

There was 1 error: 
 
1) ewbarnard\DemoMockery\BatsVerboseTest::testVerbose 
BadMethodCallException: Method Mockery_0::verbose() does not 
exist on this mock object

I found this confusing, given verbose() does exist on that 
mock object. The answer is verbose only “exists” when it is 
called with precisely the arguments ['test', 5]. If the meth-
od gets called with different arguments, Mockery reports the 
method does not exist.

We can verify this by removing the withArgs() part of the 
expectation:

$caller->shouldReceive('verbose') 
      ->once();

Now all tests pass. In fact, that’s how I debug this situa-
tion. I first remove the arguments from the expectation. If 
the test passes, I know the SUT is not passing the expected 
arguments. If I am still puzzled, I throw an exception at that 
point in the code which displays the parameter list being 
used. PHPUnit displays the exception message, and I can 
usually tell what went wrong.

Either way, the result is likely a bug prevented. However, be 
careful! It’s far too easy to “chase down the rabbit hole,” caught 
up in test set-up dependencies. Remember Will Rogers’ 
advice, “When you find yourself in a hole, stop digging.” Step 
back and consider the situation. You might realize you’re 
on the wrong track. You might decide to “bookmark your 
location” by marking the test incomplete and then dig in to a 
different piece of the project.

That’s it! Mockery has a lot more capability, but you can go a 
very long way with mock(), makePartial(), shouldReceive().

Mocking Protected Methods
Mockery has one more capability I find particularly useful 

with TDD. It can mock (and therefore allow you to declare 
expectations for) protected methods. Generally speaking, 
you should focus testing efforts on your public methods. 
Sometimes, though, it’s best to:

• Quickly write a test which verifies the protected meth-
od gets called as expected.

• Move on to the next step.
For example, suppose our code calls verbose() based on a 

certain condition. We can test that our code correctly detects 
the condition by verifying it calls verbose(). Our code is in 
Listing 9.

All tests pass. Note the differences from our prior mocking 
example:

• We gave the mock a different variable name. We’ll see 
why below.

• We are mocking the target class, not a dependency class. 
Our dependency is the verbose() method inside our 
target class.

• We allow mocking protected methods.

• The expectations call looks like the prior setup, except 
we expect to call with a single argument.

• We flip variables from $mock to $target. This is so the 
PhpStorm static analysis tools correctly identify the 
respective classes involved. $mock is a mock() result, 
having the shouldReceive() method and friends. We 
tell PhpStorm $target is an instance of our target class, 
having the doSomething() method.

Generally speaking, the need to test protected methods 
is an indication of design gone wrong. I used to bypass the 
issue by marking everything public. I’ve decided it’s better to 
use public/protected as intended.

LISTING 9
01. protected function verbose($message, $lines = 1) {
02.    if ($this->caller) {
03.       $this->caller->verbose($message, $lines);
04.    }
05. }
06. 
07. public function doSomething($memberId = 0) {
08.    $memberId = (int)$memberId;
09.    if ($memberId <= 0) {
10.       $this->verbose('Invalid member id encountered');
11.       return;
12.    }
13. }

LISTING 10
01. public function testDoSomethingZero() {
02.    $mock = m::mock(BatsCommon::class)->makePartial();
03.    $mock->shouldAllowMockingProtectedMethods();
04.    $mock->shouldReceive('verbose')
05.         ->once()
06.         ->withArgs(['Invalid member id encountered'])
07.    ;
08.    /** @var BatsCommon $target */
09.    $target = $mock;
10.    $target->doSomething(0);
11. }

phparch.com


30  \  January 2017   \  www.phparch.com

Strangler Pattern, Part 4:Unit Test Design with Mockery 

When you have a lot of complex business logic, that logic 
needs to go somewhere. When you’re doing Test-driven 
Development and aim to keep your method complexity low, 
you tend to have a lot of protected methods laying out that 
business logic.

If you have a lot of protected methods, you may have 
another class trying to get out. But those protected methods 
still need to go somewhere. Whether you have two protected 
methods in class A and two more in class B, you still have 
four protected methods which might play best by being indi-
vidually tested when you’re doing Test-first Development. 
That won’t always be the case, but when it is, I say just mock 
the protected method and get on with it.

Your most likely alternative is PHPUnit’s data provider. 
You can pass a series of inputs through the public method 
and verify return values (or use a spy to verify internal state). 
You can drive your development by adding more and more 
cases to the data provider: add another use case to the data 
provider; watch it fail; write the minimum code to make it 
pass; refactor. That refactor may well involve extracting the 
new logic to a new protected method.

Summary
There’s no way around this: unit tests are tricky because 

dependencies are tricky to test. Learn the craft and prac-
tice, practice, practice. It gets better. It gets smoother. You’ll 
find your judgment more and more reliable. You’ll find 

yourself spending a larger proportion of your time in the 
red-green-refactor cycle of real development, which can be 
quite fun. You’ll find yourself spending less time debugging 
in production, which is generally not fun.

When you are developing code, your testing target is that 
one method you’re working with at the moment. Everything 
else, even that related method ten lines down, is a dependen-
cy. Put your target method in “laser focus.” If anything else 
makes it difficult to test, use mocks, spies, and anything else 
in your arsenal to push those dependencies aside.

Looking ahead, Part Five: Producer-Consumer Program-
ming in CakePHP/RabbitMQ brings our case study full circle. 
We’ll see a bit more code, and look at the radically different 
way of thinking that gets us there.

 Ed Barnard began his career with 
CRAY-1 serial number 20, working 
with the operating system in assembly 
language. He’s found that at some point 
code is code. The language and details 
don’t matter. It’s the craftsmanship that 
matters, and that craftsmanship comes 
from learning and teaching. He does PHP 

and MySQL for InboxDollars.com. @ewbarnard

phparch.com
http://inboxdollars.com
http://twitter.com/ewbarnard
http://automattic.com/jobs


Each issue of php[architect] magazine focuses on an important 
topic that PHP developers face every day. 

We cover topics such as frameworks, security, ecommerce, databases, scalability, 
migration, API integration, devops, cloud services, business development, content 
management systems, and the PHP community.

Digital and Print+Digital 
Subscriptions

Starting at $49/Year

http://phpa.me/mag_subscribe

Get php[architect] delivered to your 
doorstep or digitally every month!

Borrowed this magazine?

https://www.phparch.com/magazine/2016-2/december/?utm_source=mag1216&utm_medium=pdf&utm_campaign=subscribe

	Table of Contents
	Capturing an API’s Behavior With Behat
	Writing Better Code with Four Patterns
	Mirror, Mirror On the Wall: Building a New PHP Reflection Library
	Strangler Pattern, Part 4:
Unit Test Design with Mockery
	Capturing an API’s Behavior With Behat
	Michael Heap

	Writing Better Code with Four Patterns
	Joseph Maxwell

	Mirror, Mirror On the Wall: Building a New PHP Reflection Library
	James Titcumb

	Strangler Pattern, Part 4:
Unit Test Design with Mockery
	Edward Barnard

	Blueprints for Success
	Monkey Patching Your
Way to Testing Nirvana
	Matthew Setter

	Understanding Objects
	David Stockton

	Uncle Cal’s Thank You Letter
	Cal Evans

	New Year’s Security Resolutions
	Chris Cornutt

	December Happenings
	On Being a Polyglot
	Eli White


