

PHP[TEK] 2017
The Premier PHP Conference 

12th Annual Edition
May 24-26 — ATLANTA

Keynote Speakers:

Gemma Anible 
WonderProxy

Keith Adams 
Slack

Alena Holligan 
Treehouse

Larry Garfield 
Platform.sh

Mitch Trale 
PucaTrade

Sponsored By: Save $200 on tickets 
Buy before Feb 18th

tek.phparch.com

PHP Application Hosting

mailto:careers@nexcess.net

Sponsored By:

PHP[TEK] 2017
The Premier PHP Conference 

12th Annual Edition

May 24-26 — ATLANTA

Keynote Speakers:

Gemma Anible 
WonderProxy

Keith Adams 
Slack

Alena Holligan 
Treehouse

Larry Garfield 
Platform.sh

Mitch Trale 
PucaTrade

Save $200 on tickets 
Buy before Feb 18th

tek.phparch.com

Samantha Quiñones 
Etsy

http://tek.phparch.com
http://tek.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson
Technical Editors:
Oscar Merida

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2017—musketeers.me, LLC
All Rights Reserved

FEBRUARY 2017
Volume 16 - Issue 2

2 Escaping the Server

31 Instrument Your Apps and
Make Them Fly—With
Tideways!
Matthew Setter

38 Learn to Say No
Cal Evans

40 Building Better Objects
David Stockton

44 PHP 7—a Step Closer to a
More Secure PHP
Chris Cornutt

48 The Value of Moving
Forward
Eli White

Columns
Escape the Server
Features
3 Strangler Pattern, Part

Five: Producer-Consumer
Programming in CakePHP/
RabbitMQ
Edward Barnard

10 Mocking the File System with
VfsStream
Gabriel Zerbib

14 Learning to Code with
Minecraft, Part One
Chris Pitt

22 Creating a Cross-Platform App
With Apache Cordova
Ahmed Khan

https://www.phparch.com/magazine
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

10 \ February 2017 \ www.phparch.com

FEATURE

Mocking the File System with VfsStream
Gabriel Zerbib

Working with files is a common task in many PHP applications, whether for input data to be
processed, generated results, or even as a logging tap. But the file system is a persistent
resource, and creating unit tests that involve files requires some special care. In this article,
you’ll learn how to test against a mock file system the pieces of your application which use file
operations, instead of involving your actual drive.

In an ideal world, every line of code
exists for one very well known reason
and is written with a clear purpose.

As developers, we quickly learned
the safest way to ensure a piece of code
does what it is expected to, is to have it
pass through a unit test.

However, testing a program’s interac-
tions with files can be tricky, similarly
to testing against a database resource.
One needs to populate the test environ-
ment in a way that can be reproduced,
with full control over both the data and
metadata. Your file manipulations must
be made in a sandbox (you don’t want
to modify critical files accidentally),
and their outcome has to be measurable.
You also need to perform clean-up tasks
thoroughly after your test scenario has
finished.

Fortunately, there are tools that can
help, and we will discuss the vfsStream
library in this article.

Base Principle
vfsStream utilizes a stream wrap-

per to expose a virtual file system to
your program. Your unit tests compo-
nent can manipulate files, folders, and
permissions as if they were physically
stored entities, whereas they are actual-
ly only in memory, much like in a RAM
disk.

Using a virtual file system makes it
easy for your unit tests to represent a
machine-independent folder structure:
no need to worry about the physical
location of the project on the various
developers’ workstations. It also enables
you to provision borderline case scenar-
ios (for example, to simulate denied
permission situations on critical files,

when they would actually be fine on the
developer’s physical machine).

Stream Wrappers
PHP uses the concept of stream

wrappers1 to handle various proto-
cols (either built-in or user-defined)
as stream resources. For example, you
can usually transparently read a file
by its URL whether it is found in the
local file system, or served by a remote
web server (URL begins with http://)
or by an FTP server (URL in ftp://).
The scheme component of the address
(http, tcp, and so on) tells PHP how to
negotiate the access to the resource.

The default wrapper, when no scheme
is specified, is the local file system.

You are probably already familiar
with some non-trivial stream wrappers,
in addition to our usual http friend:
in particular the php scheme, as in
fopen('php://stderr', 'w') (which
writes to the Linux standard error
stream of the PHP process). You may
have worked with the phar:// wrapper
as well, to include a script inside a phar
archive. And some of you were already
aware the content of “folder/file.txt”
inside “archive.zip” can be obtained by:

file_get_contents(
 'zip://archive.zip#folder/file.txt'
);

But we are not limited to the built-in
schemes. PHP lets us register our own
stream wrappers, designed to handle
our custom schemes, through the func-
tion:

1 stream wrappers:
http://php.net/en/wrappers

stream_wrapper_register(
 $scheme, $wrapperClass
)

The wrapper class you provide must
implement the StreamWrapper inter-
face2, which defines all the low-level
operations PHP carries out when
it tries to reach a resource by your
custom scheme. For example, the wrap-
per should supply a handler for the
stream_eof() operation, which PHP
consults to check if it has reached the
end of the accessed stream. (For a termi-
nal-like stream such as php://stderr,
the end is never reached. It is really up
to the wrapper to decide how to handle
the stream.

Note: There is no actual
streamWrapper base class or
interface. The term only exists in
the PHP manual: there is nothing
to derive from, but your class must
comply with the signatures indicat-
ed in the documentation.

vsfStream3 acts as a stream wrapper
(namely vfs://), and implements some
sort of in-memory file system, complete
with (Linux-like) file permissions and
other specifics that an application
would expect from an actual persistent
storage.

Getting Started
Classically, the installation is best

achieved by adding a development
dependency to your Composer project:

2 StreamWrapper interface:
http://php.net/class.streamwrapper

3 vsfStream:
https://github.com/mikey179/vfsStream

phparch.com
http://php.net/en/wrappers
http://php.net/class.streamwrapper
https://github.com/mikey179/vfsStream

 www.phparch.com \ February 2017 \ 11

Mocking the File System with VfsStream

composer require --dev mikey179/vfsStream

A development dependency is a library which your appli-
cation does not need at run-time, but rather, that you will
use when developing or debugging. In our case, the mock
file system library is only useful when writing and execut-
ing our unit tests, which means the dependency should
not be deployed to production. In the composer.json
file, the development dependencies are declared in the
"require-dev" section.

Before working with virtual files, you need to set up the
virtual file system, by indicating its mounting root. vfsStream
defaults to “root/,” but I recommend simply / instead because
it is closer to the common understanding of the top compo-
nent of a hierarchical file-system-like structure. But, as we
will see now, the root is only a logical naming, and it does not
make any real difference in the way you write and use tests
with vfsStream.

use org\bovigo\vfs\vfsStream;

$vfs = vfsStream::setup('/');

Then you are ready to populate your file system and to
assert its layout and contents with the regular file-related
functions, where all the file names are specified using the
vfs:// protocol scheme:

// Obtain a scheme-prefixed URL for the following virtual
// absolute path:
$url = vfsStream::url('/test.txt');
// $url is now: 'vfs:///test.txt'

// Use PHP functions to manipulate the file
file_put_contents($url, "Contents of the new file . \n");

Or, you may prefer the fluent methods provided by the
vfsStream library to walk through the directory structure and
create the nodes.

vfsStream::newFile('test.txt')
 ->at($vfs)->setContent("Contents of the new file.\n");

Both flavors create the file 'test.txt' at the root of your
virtual file system. Any piece of your code under test can
reach this file by means of the usual PHP functions like
rename, unlink, fopen (or most of them—see Limitations
below). The only requirement is for you to specify the full
address: 'vfs:///test.txt'.

Recipes
We will now see how to use this tool in various common

testing scenarios.

Directory Structure
When warming up the test environment, we often need to

prepare a pre-existing structure of files and folders, because
this is what the system under test expects to see.

This is done by the create helper.

vfsStream::create([
 'var' => [
 'log' => ['custom.log' => 'Some initial contents']
],
 'tmp' => []
]);

This code will create the var and tmp folders under the
root of your VFS, and a plain file custom.log with some text
contents under var/log. The argument to the create helper
is a tree-shaped associative array, whose keys are node names
(either folders or files). If the value for the key is another array,
then the node is a folder. If the value is a string, then the node
is a file whose contents is this string.

Of course, the directory tree thus created is not immutable,
and you can always act on it through the PHP file system
functions as in Listing 1 (which is the whole point of the
library).

Permissions
The permission system in vfsStream does not pretend to

implement a real life environment. Rather, it provides with
tools to declare a particular node as accessible or forbidden to
the current process (keep in mind that the library is intended
for testing).

vfsStream defines a number of mock users and groups
for your various scenarios. When creating a virtual file, the
owner and group are those of the real process that runs your
PHP script (see also umask for more details). But you can act
on file permissions and ownership with chmod, chown, and
chgrp to prove your code.

Therefore, these are the kind of checks you might want to
do, see Listing 2.

Listing 1

 1. // Rename virtual 'var' folder
 2. rename('vfs:///var', 'vfs:///srv');
 3. // Equivalent to:
 4.

// rename(vfsStream::url('/var'), vfsStream::url('/srv'));
 5.

 6. // Get a PHP iterator on the entries of virtual /tmp
 7. $it = new DirectoryIterator(vfsStream::url('/tmp'));
 8.

 9. // Print the contents of this virtual file
10. readfile(vfsStream::url('/srv/log/custom.log'));

Listing 2

 1. $url = 'vfs:///var/log/custom.log';
 2. echo intval(is_writable($url)); // prints 1
 3.

 4. chmod($url, 0400);
 5. echo intval(is_writable($url)); // prints 0
 6.

 7. chown($url, vfsStream::OWNER_USER_1);
 8. echo intval(is_readable($url)); // prints 0
 9.

10. readfile($url); // Issues a warning

phparch.com

12 \ February 2017 \ www.phparch.com

Mocking the File System with VfsStream

Running Out of Disk Space
The case when your host system runs out of storage space

is often ignored by developers because it seems unlikely
enough, and mostly because we lack a test tool to help in this
task. An attacker can try a denial-of-service attack by over-
whelming a web application with uploaded files, and exploit
the resulting faulty behavior. Preparing for this situation
should not be left out anymore.

//Declare that the virtual storage has only 10 bytes left.
vfsStream::setQuota(10);

file_put_contents('vfs:///tmp/test.txt', 'abcdefghijkl');
// Raises: PHP Warning: file_put_contents(): Only 0 of 12 bytes
// written, possibly out of free disk space

Handling Large Files
In a similar mindset, loop performance and memory usage

when parsing files can be tested by simulating the existence
of large files of arbitrary size.

Suppose the class under test opens an input file for read-
ing and an output file for writing, and transforms the data in
between, by small chunks.

Proving your logic on a large input file is easily done, using

the file factory:

$largeFile = vfsStream::newFile('large.txt')
 ->withContent(LargeFileContent::withMegabytes(100))
 ->at($vfs->getChild('tmp'));

echo filesize($largeFile->url()); // prints: 104857600

The library will smartly maintain a vacuum-based incom-
plete structure whose virtual bytes are seen as spaces (0x20)
by the PHP functions. The actual memory is not filled up and
you can still write custom data at arbitrary positions in the
file (see Listing 3).

The vfsStream tool stores a fine representation of your
simulated data: all those megabytes will still be seen as spaces
by fread and copy etc., but your actual phrase is found there
in its proper place.

The readfile instruction here, will dump a big lot of white
spaces, with ‘some real content’ after the first 5,000 (take my
word for it; Oscar won’t let me print the console output here).

SPL with VfsStream
Browsing the file system to get a (potentially recur-

sive) list of the items it contains below a specific point, is
best done in PHP with the FilesystemIterator class (and
RecursiveDirectoryIterator) from the Standard PHP
Library (SPL). The vfsStream package is a perfect companion
for testing an application using these classes.

Let’s consider a program which searches a specific directo-
ry for JPG images (*.jpg file names) in order to move them
elsewhere. The code is in Listing 4.

You could test this code using PHPUnit (see Listing 5), by
checking that all the JPG files were moved (and only those).

The SPL file system classes, as well as the rename file oper-
ation function, are indifferent to whether the file system is
physical or virtual. They just work as expected.

Build for Testing
You may have noticed, as you drove on a bridge, the metal-

lic or concrete building blocks that compose the piers and
girders often present large holes or grooves at intervals.

Construction engineering teaches us that some of these
holes are meant to lighten the structure, by simply extracting
matter in a way which does not affect the strength or func-
tion of the block. But most of them really, are designed solely
for quality assurance and transportation purposes. It is easier
to carry a heavy block of concrete, move it around, and posi-
tion it accurately when you can pick it up with a backhoe by
its holes and grooves.

The lesson to learn in programming is that it is not less
important, when constructing our code for a functional
purpose, to make it testable by design.

One good practice that is very dear to me is called
Test-driven Development: as soon as a feature is specified, we
write a set of corresponding unit tests first, before developing
the actual feature. Of course, the tests fail in the beginning,

Listing 3

 1. // open virtual file for modifying its content
 2. $fp = fopen($largeFile->url(), 'r+');
 3. // go to position 5K
 4. fseek($fp, 5000);
 5.

// and put some actual phrase there, among all the spaces.
 6. fwrite($fp, 'Some real content');
 7. fclose($fp);
 8.

 9. readfile($largeFile->url());

Listing 4

 1.<?php
 2.

 3. class JpegMover
 4. {
 5. public function searchAndMove($directory, $moveTo) {
 6.
// Iterate over the children of specified directory
 7. $di = new FilesystemIterator($directory);
 8. foreach ($di as $pathname => $item) {
 9. // If it's a regular file, with extension 'jpg'
10. // then move it to destination folder.
11. if ($item->isFile() &&
12. ($item->getExtension() == 'jpg')
13.) {
14. rename($pathname, $moveTo);
15. }
16. }
17. }
18. }

phparch.com

 www.phparch.com \ February 2017 \ 13

Mocking the File System with VfsStream

because the code to achieve it does not exist yet. Then, as
the development proceeds, more and more test assertions
become green.

Although this methodology is not directly related to our
current topic, nor is it mandatory, I can only recommend
it warmly in general, and in particular when it comes to
working with files. Because, as seen earlier, not everything
is possible to abstract the file-related testing. Your effective
code must be aware of the possibility to pass through a unit
test engine using a virtual file system (which means allow-
ing for prefix-enabled file names).

In particular your code cannot use the magic constant
__DIR__ to locate a data file relative to the running script
(because your running script will probably never reside
inside the vfsStream virtual space). You should also avoid
relying on absolute physical paths for your temp or cache
location etc., under penalty of not being able to test your
code thoroughly.

Whenever possible, tell your code where to find the “root”
of the (potentially virtual) file system rather than making
assumptions on its nature and location. Either use some
sort of dependency injection container or another config-
uration mechanism.

Limitations
Although this tool has proven itself very useful to me in

several projects, it is worth noting not all the file-related
functions are compatible with scheme handlers. Some of
them are only a thin encapsulation around their C coun-
terpart, for which the PHP engine won’t activate its layer
of stream wrappers. There is a list of known issues4 on the
project’s page, which may save you some precious time when
using vfsStream.

For example, the following will not let you obtain a tempo-
rary filename in the virtual file system, even if you specify a
URL in vfs:// as the $dir parameter because the underlying,
low-level C function is unaware of user-land handlers.

tempnam($dir, $prefix)

But there is a workaround. As mentioned above, you shall
design your application to receive from “outside” the location
of the temp folder (whether through configuration files, envi-
ronment variables or dependency injection so as to provide
different bootstrapping in production or unit tests) and you
can generate a unique string by different methods (such as
uniqid or openssl_random_pseudo_bytes).

Perhaps the most frustrating limitation in using vfsStream
is that the gz family of PHP functions (gzopen, gzwrite, etc.)
are low-level encapsulations of the zlib C library. Current-
ly, the zlib library cannot be aware of your PHP-specific
vfsStream memory structure. If your application needs to
write gz data transparently to a file, while keeping low in CPU
and not eating up the memory of your PHP script, the gz
functions are here to help. But then you can’t test using virtual

4 known issues: https://github.com/mikey179/vfsStream/wiki/Known-Issues

files, and you will have to write tests using physical files. (Yes,
you still need to write tests!). The workaround here, to be able
to test with vfsStream, is to use the higher level gz functions
(gzencode, gzdecode etc.) which work in the PHP domain,
in memory (not directly on disk), and to read and write to
disk after in-memory compression. However, this might not
always be a suitable solution for your project.

Conclusion
Even though you may encounter specific situations where

vfsStream can’t help, it remains handy for most projects.
Judging by the number of Packagist downloads and projects
dependent on it the library is very stable and popular.

If you’ve been avoiding writing tests for file system related
methods in your code, stop procrastinating! vfsStream is a
capable tool for adding unit tests to verify file-system opera-
tions work as intended.

 Gabriel Zerbib is a full-stack engineer
and cloud architect, who enjoys
programming in various languages since
the 80s. Currently based in Tel Aviv, he
specializes in high frequency applications
and large scale data volumes. @zzgab

Listing 5

 1. <?php
 2. class MoverTest extends PHPUnit_Framework_TestCase
 3. {
 4. public function testAllTheFilesWereMoved() {
 5. // Prepare the virtual filesystem layout
 6. vfsStream::setup('/');
 7.

 8. // We create two jpg files and one txt file
 9. vfsStream::create([
10. 'images' => [
11. 'move1.jpg' => "",
12. 'move2.jpg' => "",
13. 'keep.txt' => "",
14.],
15. 'target' => []
16.]);
17.

18. $dir = vfsStream::url('/images');
19. $dest = vfsStream::url('/target');
20.

21. $systemUnderTest = new JpegMover();
22. $systemUnderTest->searchAndMove($dir, $dest);
23.

24. // Assertions
25. $this->assertFalse(file_exists($dir . '/move1.jpg'));
26. $this->assertFalse(file_exists($dir . '/move2.jpg'));
27. $this->assertTrue(file_exists($dir . '/keep.txt'));
28. $this->assertTrue(file_exists($dest . '/move1.jpg'));
29. $this->assertTrue(file_exists($dest . '/move2.jpg'));
30. }
31. }

phparch.com
https://github.com/mikey179/vfsStream/wiki/Known-Issues
http://twitter.com/zzgab

Each issue of php[architect] magazine focuses on an important
topic that PHP developers face every day.

We cover topics such as frameworks, security, ecommerce, databases, scalability,
migration, API integration, devops, cloud services, business development, content
management systems, and the PHP community.

Digital and Print+Digital
Subscriptions

Starting at $49/Year

http://phpa.me/mag_subscribe

Get php[architect] delivered to your
doorstep or digitally every month!

Borrowed this magazine?

https://www.phparch.com/magazine/2016-2/october/?utm_source=mag0217&utm_medium=pdf&utm_campaign=subscribe

	Table of Contents
	Strangler Pattern, Part Five: Producer-Consumer Programming in CakePHP/RabbitMQ
	Edward Barnard

	Mocking the File System with VfsStream
	Gabriel Zerbib

	Learning to Code with Minecraft, Part One
	Chris Pitt

	Creating a Cross-Platform App With Apache Cordova
	Ahmed Khan

	Escaping the Server
	Instrument Your Apps and Make Them Fly—With Tideways!
	Matthew Setter

	Learn to Say No
	Cal Evans

	Building Better Objects
	David Stockton

	PHP 7—a Step Closer to a More Secure PHP
	Chris Cornutt

	The Value of Moving Forward
	Eli White

