
www.phparch.com
March 2017

VOLUME 16 - Issue 3

Education Station:
Validate the
Complexity of
Your Writing With
TextStatistics

Community Corner:
Three Tech Lessons I
Learned Cleaning the
Kitchen

Leveling Up:
Exploring Object
Immutability

finally{}:
Working Together

Learning to Code with Minecraft,
Part Two

Deploying to Docker Swarm

How to Use SELinux (No, I Don’t
Mean Turn It Off)

Pursuing a Graduate Degree as
Professional Development

Back to the
Drawing Board

ALSO INSIDE

PHP Application Hosting

mailto:careeers@nexcess.net

Sponsored By:

PHP[TEK] 2017
The Premier PHP Conference 

12th Annual Edition

May 24-26 — ATLANTA

Keynote Speakers:

Gemma Anible 
WonderProxy

Keith Adams 
Slack

Alena Holligan 
Treehouse

Larry Garfield 
Platform.sh

Mitch Trale 
PucaTrade

tek.phparch.com

Samantha Quiñones 
Etsy

http://tek.phparch.com
http://tek.phparch.com
https://tek.phparch.com?utm_campaign=pas0317&paref=pas0317

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson
Technical Editors:
Oscar Merida

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2017—musketeers.me, LLC
All Rights Reserved

MARCH 2017
Volume 16 - Issue 3

2 Back to the Drawing
Board

26 Validate the Complexity
of Your Writing With
TextStatistics
Matthew Setter

32 Exploring Object
Immutability
David Stockton

38 Three Tech Lessons I
Learned Cleaning the
Kitchen
Cal Evans

44 Working Together
Eli White

Columns
Back to the Drawing Board
Features
3 Learning to Code with

Minecraft, Part Two
Chris Pitt

13 Deploying to Docker Swarm
Chris Tankersley

18 How to Use SELinux (No, I Don’t
Mean Turn It Off)
Chuck Reeves

22 Pursuing a Graduate Degree as
Professional Development
Jack D. Polifka

https://www.phparch.com/magazine
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

26 \ March 2017 \ www.phparch.com

Education Station

Validate the Complexity of Your
Writing With TextStatistics
Matthew Setter

While code can often be the foundation of what we do on a daily basis; it’s not the
only thing which is important. Well, it shouldn’t be, if it is. Another, dare I say, equally
important part is documentation. This can be class and function documentation, end user
documentation, tutorials—even creating broader content such as screencasts and online
training.

Given that, we have to regularly ask ourselves:

Is the documentation we’re writing able to be read and
comprehended by the majority of people who will read it?

Welcome to TextStatistics
Perhaps you’ve not stopped to consider this previously. If

not (or even if you have), in this month’s edition of Educa-
tion Station, I’m going to introduce you to a library which can
help you gauge the complexity of your writing. If you work
with a content management system, these tools can help your
content authors assess the complex nature of their writing,
and hopefully simplify it to reach site visitors.

The library is called TextStatistics1, by Dave Child. The
library, as the repository describes it:

Generates information about text including syllable
counts and Flesch-Kincaid, Gunning-Fog, Coleman-Liau,
SMOG and Automated Readability scores.

These terms might not mean a lot to you. So, before we
dive into the library, let’s look at what they mean. Collectively,
Flesch-Kincaid, the Gunning Fog Index, Coleman-Liau, and
SMOG are all ways of calculating a readability score.

What is a Readability Score?
According to readable.io2, a readability score is:

A computer-calculated index which can tell you roughly
what level of education someone will need to be able to
read a piece of text easily.

It goes on to say that:

There are several algorithms available for measuring
scores, and these use factors like sentence length, syllable

1 TextStatistics: http://phpa.me/gh-text-statistics
2 According to readable.io: https://readable.io

count, percentage of multi-syllable words and so on to
calculate their own readability score.

To summarize, these algorithms are all means of estimating
the complexity of a given piece of text. Once you’ve deter-
mined its complexity, you can then know, with a rough degree
of certainty, what level of education a person will require to
fully understand it. You can then more accurately write to suit
your reader.

Gunning Fog
But what are these tests? Let’s take a more detailed look,

starting with Gunning Fog3.

In linguistics, the Gunning fog index is a readability
test for English writing. The index estimates the years of
formal education a person needs to understand the text
on the first reading. A fog index of 12 requires the reading
level of a U.S. high school senior (around 18 years old).

Coleman-Liau
Next, there’s Coleman-Liau4:

The Coleman–Liau index was designed to be easily calcu-
lated mechanically from samples of hard-copy text. Unlike
syllable-based readability indices, it does not require that
the character content of words be analyzed, only their
length in characters.

SMOG
Then, there’s SMOG5:

SMOG Readability Formula estimates the years of
education a person needs to understand a piece of writing.

3 Gunning Fog: http://phpa.me/gunning-fox-index
4 Coleman-Liau: http://phpa.me/coleman-liau-index
5 SMOG: http://phpa.me/smog-readability-formula

phparch.com
http://phpa.me/gh-text-statistics
https://readable.io
http://phpa.me/gunning-fox-index
http://phpa.me/coleman-liau-index
http://phpa.me/smog-readability-formula

 www.phparch.com \ March 2017 \ 27

Education Station

Validate the Complexity of Your Writing With TextStatistics

McLaughlin created this formula as an improvement over
other readability formulas.

Flesch-Kincaid
Finally, there’s theFlesch-Kincaid, which we’ll focus on,

primarily, for the rest of the column.

The Flesch–Kincaid readability tests are readability tests
designed to indicate how difficult a passage in English is
to understand. There are two tests, the Flesch Reading
Ease, and the Flesch–Kincaid Grade Level.

In a nutshell, the higher a piece of text scores on the Read-
ing Ease test, then the lower it will score on the Grade Level
test. Said another way, the easier a piece of text is to read, then
the lower the level of education is required to read it. You can
see the formula for how the Reading Ease test is calculated in
Figure 1.

And in the table below, you can see how the scores marry-
up with the grade levels.

Score School Level Notes

100.00–90.00 5th grade
Very easy to read. Easily
understood by an average
11-year-old student.

90.0–80.0 6th grade
Easy to read. Conver-
sational English for
consumers.

80.0–70.0 7th grade Fairly easy to read.

70.0–60.0 8th & 9th grade
Plain English. Easily
understood by 13–15-year-
old students.

60.0–50.0 10th to 12th grade Fairly difficult to read.

50.0–30.0 College Difficult to read.

0–30.0 College Graduate
Very difficult to read. Best
understood by university
graduates.

Now that we have all this, how do we go about measuring it
(or any of the other tests)? Good question. That’s why we have
the subject of this month’s edition: TextStatistics.

It provides methods for all of the tests above, along with a
range of other methods, for judging the complexity of a piece
of text in simpler ways. These include the number of words,
sentences, syllables and so on. We’re going to work through
the tests first, and then finish up with the more simple

methods of text analysis.

Installing It
It should go without saying, but we’re going to install

the library using Composer. To do so, run the following
command from the command line, in the root directory of
your project:

composer require davechild/textstatistics

This will, after a short period, import the package into the
vendor/ directory for your project (or make it the first one, if
you’re just experimenting with it).

Let’s Write Some Code
Now we’re ready to see how it works. Honestly, there’s not a

lot to it. To sum it up, all we need to do is pass a piece of text
to one of the respective functions, and it will report back a
score.

To get started, in a new file, let’s be unoriginal and call it
index.php, add the following code:

<?php

require_once ('vendor/autoload.php');

use DaveChild\TextStatistics as TS;

With that, we’re ready to go, but we’ll need a piece of text to
analyze. To get a proper gauge, we’ll need at least two. We’ll
take the following quote, from Iron and the Soul6, by the
legendary Henry Rollins.

When I was young I had no sense of myself. All I was,
was a product of all the fear and humiliation I suffered.
Fear of my parents. The humiliation of teachers calling
me “garbage can” and telling me I’d be mowing lawns for
a living. And the very real terror of my fellow students. I
was threatened and beaten up for the color of my skin and
my size. I was skinny and clumsy, and when others would
tease me I didn’t run home crying, wondering why.

Now, let’s get a piece of text to contrast it with, something
which is classically considered to be more sophisticated, more
complicated. The excerpt below is from Act 2, Scene 1 of The
Tempest by William Shakespeare.

Beseech you, sir, be merry; you have cause, So have we all,
of joy; for our escape Is much beyond our loss. Our hint of
woe Is common; every day some sailor’s wife, The masters
of some merchant and the merchant Have just our theme
of woe; but for the miracle, I mean our preservation, few
in millions Can speak like us: then wisely, good sir, weigh
Our sorrow with our comfort.

Update the code to include variables for both the pieces of

6 Iron and the Soul: http://www.artofmanliness.com/trunk/?p=1748

Figure 1.

phparch.com
http://phpa.me/flesh-kincaid-tests
http://www.artofmanliness.com/trunk/?p=1748

28 \ March 2017 \ www.phparch.com

Ubuntu User is the only magazine
for the Ubuntu Linux Community!

ORDER NOW!
Get 7 years of
Ubuntu User

FREE
with issue #30

BEST VALUE: Become a subscriber and save 35% off the cover price!
The archive DVD will be included with the Fall Issue, so you must act now!

Order Now! Shop.linuxnewmedia.com

Celebrating
25 Years of Linux!

UU25Years_LinuxNewMedia_1-1.indd 1 9/16/16 10:11 AM

phparch.com
http://shop.linuxnewmedia.com

 www.phparch.com \ March 2017 \ 29

Education Station

Validate the Complexity of Your Writing With TextStatistics

Ubuntu User is the only magazine
for the Ubuntu Linux Community!

ORDER NOW!
Get 7 years of
Ubuntu User

FREE
with issue #30

BEST VALUE: Become a subscriber and save 35% off the cover price!
The archive DVD will be included with the Fall Issue, so you must act now!

Order Now! Shop.linuxnewmedia.com

Celebrating
25 Years of Linux!

UU25Years_LinuxNewMedia_1-1.indd 1 9/16/16 10:11 AM

text, as in Listing 1.
Then, add the code in Listing 2, to run the Flesh-Kincaid

Reading Ease test on them.

This will render the following output.

Flesch-Kincaid Reading Ease:
 Henry Rollins: 77.8
 Shakespeare: 61

Given these scores, it can be reasonably expected that you’ll
need at least a 7th-grade education to read the text by Henry
Rollins, but a 10th- 12th-grade school education to read the
text from Shakespeare. Let’s validate that assumption by call-
ing another function: fleschKincaidGradeLevel(), to calculate
the grade level.

To do so, add the code snippet from Listing 3 to index.php.
When you run it, it will output the following results,

confirming my quick calculation:

Flesch-Kincaid Grade Level:
 5.5
 12

It shows that I was wrong. I both estimated too high for
the piece by Henry Rollins and too generally for Shakespeare.

One Thing I Want to Say

I want it to be clear that I’m not inferring the information
contained in one piece of text is any better nor worse than
the other. Specifically, I have enormous respect for Henry
Rollins and have learned a great deal from him.

What I’m seeking to convey here is that we’re only consid-
ering how the information is framed and conveyed. If we
want to debate the value of the information itself, we can
do that another day.

Another Algorithm
Let’s have a look at another test, the Spache Readability

Score7. The score:

Compares words in a text to a set list of everyday words.
The number of words per sentence and the percentage of
unfamiliar words determine the reading age.

Here’s the formula:

Grade Level = (0.121 x Average sentence length)
 + (0.082 x Percentage of unique unfamiliar words)
 + 0.659

TextStatistics contains the method spacheReadabilityScore.
Let’s run it by adding the Listing 4 code to index.php.

7 the Spache Readability Score:
http://phpa.me/spache-readability-score

Listing 1

 1. $textHenryRollins = 'When I was young I had no sense of myself.
 2. All I was, was a product of all the fear and humiliation I
 3. suffered. Fear of my parents. The humiliation of teachers
 4. calling me "garbage can" and telling me I\'d be mowing lawns
 5. for a living. And the very real terror of my fellow students.
 6. I was threatened and beaten up for the color of my skin and my
 7. size. I was skinny and clumsy, and when others would tease me
 8. I didn\'t run home crying, wondering why.';
 9.

10. $textShakespeare = 'Beseech you, sir, be merry; you have cause,
11. So have we all, of joy; for our escape
12. Is much beyond our loss. Our hint of woe
13. Is common; every day some sailor\'s wife,
14. The masters of some merchant and the merchant
15. Have just our theme of woe; but for the miracle,
16. I mean our preservation, few in millions
17. Can speak like us: then wisely, good sir, weigh
18. Our sorrow with our comfort.';

Listing 2

 1. $txtStats = new TS\TextStatistics();
 2.

 3. echo "Flesch-Kincaid Reading Ease: \n";
 4. printf(
 5. " Henry Rollins: %s\n",
 6. $txtStats->fleschKincaidReadingEase($textHenryRollins)
 7.);
 8. printf(
 9. " Shakespeare: %s\n",
10. $txtStats->fleschKincaidReadingEase($textShakespeare)
11.);

Listing 3

 1. echo "Flesch-Kincaid Grade Level: \n";
 2. printf(
 3. " %s\n",
 4. $txtStats->fleschKincaidGradeLevel($textHenryRollins)
 5.);
 6. printf(
 7. " %s\n",
 8. $txtStats->fleschKincaidGradeLevel($textShakespeare)
 9.);

Listing 4

 1. echo "Spache Readability Score: \n";
 2. printf(
 3. " %s\n",
 4. $txtStats->spacheReadabilityScore($textHenryRollins)
 5.);
 6. printf(
 7. " %s\n",
 8. $txtStats->spacheReadabilityScore($textShakespeare)
 9.);

phparch.com
http://phpa.me/spache-readability-score

30 \ March 2017 \ www.phparch.com

Education Station

Validate the Complexity of Your Writing With TextStatistics

Running it produces the following output:

Spache Readability Score:
 5
 4.1

Interestingly, Shakespeare has the lower grade level for this
test.

And Just One More
Let’s run one more algorithm, the Spache Readability

Formula8. But, before we do, here’s how it works:
1. Count the following as ‘familiar’ or ‘known’ words:
• Words appearing on the Spache Revised Word List.
• Variants of words appearing on the Spache Revised

Word List that have regular verb form endings –ing, -ed,
-es.

• Plural and possessive endings of nouns from the Spache
Revised Word List.

• First Names
• Single letters standing alone as words. E.g., “C is the

third letter of the alphabet.”
2. “Difficult Words,” i.e., the words not appearing on the

Spache Word List are counted only once, even if they appear
later with other endings. Count the following as ‘unfamiliar’
or ‘unknown’ words:

• Words not appearing on the Spache Revised Word List
(other than First Names).

• Variants of words appearing on the Spache Revised
Word List that have irregular verb form endings—unless
those variant forms also appear on the Spache List.

• Variants of words appearing on the Spache Revised
Word List that have adverbial, comparative, or superla-
tive endings –ly, -er, -est.

With that in mind, Listing 5 shows how we run it using the
library.

8 the Spache Readability Formula:
http://phpa.me/spache-readability-score

When run, we’ll get the following output:

Spache Difficult Word Count:
 23
 18

What About Some More Basic Analysis?
Now that we’ve looked at a series of the core methods,

which implement some of the larger algorithms, let’s look
at a series of the contained methods, which calculate more
accurate text statistics. The available methods calculate things
such as:

Calculation Method

Letter count letterCount()

Word count wordCount()

Sentence count sentenceCount()

Syllable count totalSyllables()

Average syllables
per/word averageSyllablesPerWord()

Average words per/
sentence averageWordsPerSentence()

Text length textLength()

Percentage of words
with three or more
syllables

percentageWordsWithThreeSyllables()

For these final examples, we’ll just analyze the text from
Henry Rollins (let’s not be bashful, I’m totally biased). Copy
the snippet from Listing 6 into index.php.

Listing 5

 1. echo "Spache Difficult Word Count: \n";
 2. printf(
 3. " %s \n",
 4. $txtStats->spacheDifficultWordCount($textHenryRollins)
 5.);
 6. printf(
 7. " %s \n",
 8. $txtStats->spacheDifficultWordCount($textShakespeare)
 9.);

Listing 6

 1. printf("Letter count: %d \n",
 2. $txtStats->letterCount($textHenryRollins));
 3. printf("Word count: %d \n",
 4. $txtStats->wordCount($textHenryRollins));
 5. printf("Sentence count: %d \n",
 6. $txtStats->sentenceCount($textHenryRollins));
 7. printf("Total syllables: %d \n",
 8. $txtStats->totalSyllables($textHenryRollins));
 9. printf("Average syllables per/word: %f \n",
10. $txtStats->averageSyllablesPerWord($textHenryRollins));
11. printf("Average words per/sentence: %f \n",
12. $txtStats->averageWordsPerSentence($textHenryRollins));
13. printf("Text length: %d \n",
14. TS\Text::textLength($textHenryRollins));
15. printf("Words with three syllables: %f \n",
16. $txtStats->percentageWordsWithThreeSyllables(
17. $textHenryRollins
18.)
19.);

phparch.com
http://phpa.me/spache-readability-score

 www.phparch.com \ March 2017 \ 31

Education Station

Validate the Complexity of Your Writing With TextStatistics

When you run it, you’ll get the following output:

Letter count: 346
Word count: 85
Sentence count: 7
Total syllables: 121
Average syllables per/word: 1.375000
Average words per/sentence: 12.142857
Text length: 458
Words with three syllables: 3.409091

In Conclusion
That’s been a rapid run-through of the TextStatistics pack-

age by Dave Child, along with some of the algorithms for
calculating text complexity, and some background on what
readability scores are and how text readability works.

Perhaps extracting statistics about text isn’t your thing, or
you haven’t considered how useful it could be, until now. If
nothing else, this month’s edition has given you a greater
appreciation of how you write, and how that impacts the abil-
ity of others to understand what you’re trying to say.

9 http://www.masterzendframework.com/welcome-from-phparch

As documentation is essential to the ability of users to use
the software which we write and maintain, it’s important that
we consider our audience’s ability to understand and process
that information.

You now have a wealth of information about the theory
behind it, as well as a library which you can use to monitor
and improve your efforts. All the best to your efforts to write
excellent documentation, to have happy users, and a massive
uptake of your software projects.

 Matthew Setter is an independent software developer,
specializing in creating test-driven applications, and a tech-
nical writer http://www.matthewsetter.com/services/. He’s
also editor of Master Zend Framework, which is dedicated
to helping you become a Zend Framework master? Find out
more9.

phparch.com
http://www.masterzendframework.com/welcome-from-phparch
http://www.matthewsetter.com/services/
http://phpa.me/web-security-2016

Each issue of php[architect] magazine focuses on an important
topic that PHP developers face every day.

We cover topics such as frameworks, security, ecommerce, databases, scalability,
migration, API integration, devops, cloud services, business development, content
management systems, and the PHP community.

Digital and Print+Digital
Subscriptions

Starting at $49/Year

http://phpa.me/mag_subscribe

Get php[architect] delivered to your
doorstep or digitally every month!

Borrowed this magazine?

http://phpa.me/mag_subscribe

	Table of Contents
	Learning to Code with Minecraft, Part Two
	Chris Pitt

	Deploying to Docker Swarm
	Chris Tankersley

	How to Use SELinux (No, I Don’t Mean Turn It Off)
	Chuck Reeves

	Pursuing a Graduate Degree as Professional Development
	Jack D. Polifka

	Back to the Drawing Board
	Validate the Complexity of Your Writing With TextStatistics
	Matthew Setter

	Exploring Object Immutability
	David Stockton

	Three Tech Lessons I Learned Cleaning the Kitchen
	Cal Evans

	Working Together
	Eli White

