
Free

Sam
ple

PHP Application Hosting

mailto:careers@nexcess.net

Sponsored By:

PHP[TEK] 2017
The Premier PHP Conference 

12th Annual Edition

May 24-26 — ATLANTA

Keynote Speakers:

Gemma Anible 
WonderProxy

Keith Adams 
Slack

Alena Holligan 
Treehouse

Larry Garfield 
Platform.sh

Mitch Trale 
PucaTrade

tek.phparch.com

Samantha Quiñones 
Etsy

http://tek.phparch.com
http://tek.phparch.com
https://tek.phparch.com

16 \ April 2017 \ www.phparch.com

FEATURE

Demystifying Multi-Factor
Authentication

Brian Retterer

Account security is a hot topic among developers and software users. No dev wants to be
responsible for the next big “user accounts breached” headline. With every new headline,
users are becoming more concerned about their security, and it’s our responsibility to create
products our users can trust. But trust between your application and your users can be difficult
to obtain. One way we gain that trust is by providing a secure browsing experience via an
SSL certificate on your server. We also gain trust by securing user passwords using industry
standards such as bcrypt.

As developers, we know that one of the best ways to assure account security and grow user
trust is by offering or enforcing Multi-Factor Authentication. A frequent recommendation is to

“enable two-factor authentication your account.” In this article, we’ll look at what this means
and how you can implement it in your applications.

What Is Multi-Factor
Authentication?

There are many different forms of
Multi-Factor Authentication. Even the
words used to describe it have a few
different versions. You may hear people
talk about multi factor, 2-factor, MFA,
factored authentication, or more. These
are all the same idea; you must have
something you know and something
you have to authenticate and gain access.
The something you know part comes
from your username and password
combination where the something you
have comes in many different forms.
This can be a physical device, such as
your cell phone, or even a one-time-use
code that is emailed to you.

The majority of you have likely expe-
rienced Multi-Factor Authentication in
some form or another. This is a safe bet
for me to make because Multi-Factor
Authentication is all around you. If you
remember the two main requirements,
something you know and something
you have, we can apply them to every-
day life. A transaction at an ATM fits
our criteria. You know your pin number,
and you have your debit card.

In the technology world, we have a

few options available to us. The afore-
mentioned case of an email being sent
with a one-time-use code is one of the
most common ways of implementing
MFA. Although this is the method I’ll
be showing you how to set up, I’d be
remiss if I didn’t cover the other secure
options that you have as a developer. A
newer standard for handling MFA is to
allow the use of a Time-Based one-Time
Password, or TOTP. The most common
method of implementation would be to
use Google Authenticator.

Google Authenticator is a trust
between a device and the authentica-
tion server. Three items are working
together to create a successful login. A
shared secret encoded with the Base32
algorithm that your device and the
authentication server know, the current
time, and a signing function. Once your
application server creates the secret,
and allows the user to input, or scan a
QR code, the user will be given a 6-digit
code which is only good for one minute
(plus or minus a leeway) that can be
used as part of their login.

Another form of MFA you may be
more familiar with is a code being sent
over SMS. This method has come under
scrutiny over the last few years as it is

becoming less and less secure, given
someone could intercept the code over
SMS or pose as your service provider.
However, it works essentially the same
as all of the other methods. A code

Figure 1.

phparch.com

 www.phparch.com \ April 2017 \ 17

Demystifying Multi-Factor Authentication

which is associated with the user trying to log in is sent to
the user’s registered cell phone number. During the login,
they are asked for this code. Once the code has successfully
been used, or unsuccessfully used after a set amount of time
(usually one to five minutes) the code is removed, and a new
one will be generated at the next login.

Why is SMS less secure? A determined attacker could
hijack the messages. They could socially engineer your
service provider to send them to a different phone.
Government friendly telecom companies could hand them
over to the authorities, and fake cell phone towers could
intercept them. For more see So Hey You Should Stop
Using Texts for Two-Factor Authentication1

How to Implement MFA In Your Project
Now that you know what MFA is and some of the types

available, let’s look at how you can implement it in your appli-
cation. The most universal system for MFA is a one-time-use
code that is emailed to the user after a matched username and
password combination. This article is going to be using a basic
scaffolding of the Laravel framework. We will be using the
make:auth command to provide some basics and will modify
from there. If you are unfamiliar with Laravel, the general
concept will be the same, but you may need to research how
to integrate it with your specific framework. The final code
for this project can be cloned from bretterer/email-multi-fac-
tor-authentication2.

To get started, let’s create a new Laravel project:

composer create-project laravel/laravel \
 email-multi-factor-authentication

Once the Laravel project has been created, we need to
initialize the authentication system:

php artisan make:auth

Now, if you were to visit the site in the web browser, you
would see our login and register views. We will need to set
up some database connections as well as run our migrations.

In your .env file:

DB_CONNECTION=sqlite
MAIL_DRIVER=log

Then run:

php artisan migrate

Once you have all of that setup, you should be able to go to
/register and register for a new account. You’ll see the login
form in Figure 2.

1 So Hey You Should Stop Using Texts for Two-Factor Authentica-
tion: http://phpa.me/wired-sms-2fa

2 bretterer/email-multi-factor-authentication:
https://github.com/bretterer/email-multi-factor-authentication

Since Laravel uses the email address as the default for the
username field, we have everything we need to continue with
our modifications to require a second factor for authenti-
cation. Looking back, what we need to have for a factored
authentication with email is: (a) something the user knows
and (b) something the user has. The user knows their user-
name and password, so we need to provide a code to their

email, something they have, so they can fully log in. Since we
want the codes to expire after a set amount of time, let’s say
five minutes, we’ll need to create a new table to store all the
codes. Let’s create and run a new migration as in Listing 1.

First, stub out the migration class file, which will be in the
database/migrations directory. Then update the up method.

php artisan make:migration create_mfa_codes_table

Then, run the migration:

php artisan migrate

The remainder of this article assumes you know how to
use artisan to scaffold any code we need. If stuck, refer to the
project on GitHub.

Next, need to “hijack” the login Laravel does for us since
we don’t want to set any of the cookies for the user until they
successfully input the code that was emailed to them. To do
so, we will need to create our own login method which vali-
dates the user credentials, and if it is valid, sends an email to
the user with a random code which we store in our database
for later use (See Listing 2).

Figure 2.

Listing 1.

 1. public function up()
 2. {
 3. Schema::create('mfaCodes', function (Blueprint $table) {
 4. $table->increments('id');
 5. $table->integer('user_id');
 6. $table->string('code');
 7. $table->timestamp('expires');
 8. $table->timestamps();
 9. });
10. }

phparch.com
http://phpa.me/wired-sms-2fa
https://github.com/bretterer/email-multi-factor-authentication

18 \ April 2017 \ www.phparch.com

Demystifying Multi-Factor Authentication

The majority of the login method will remain the same, but
where we need to take over is using the validate() meth-
od on the guard class instead of the attempt() method. You
will see these changes on line 11. You will also see we need a
new method to save a new code into our table which will be
used to email, as well as a method to actually email the user.
Now, both of these methods (see Listing 3) are inside of the
LoginController, but there is no reason they have to live there.
You can place these anywhere in your application.

We also need to add a new route, as in Listing 4, for the
/login/challenge endpoint where our form will live for the
user to enter the code sent to their email. We also need a new
Mailable class that will handle the email sending. If you are
unsure what the Laravel Mailer class is, or how to use it, you
can find more information in the Laravel documentation3.

We are now in the home stretch of the setup for our emailed
code factored authentication. The last step is handling a way
for the user to enter the code we just sent them. We’ll need a
few additions to our login controller, a couple of routes, and a
new view. Let’s begin with the view, shown in Listing 5. Copy
the current login view and modify it slightly since it is close
to what we need. Take out the password field, and change the
email field over to a code text field. Make sure to also change
all the error checks over to a key of code. You should also
remove any of the extra links on the page that are no longer
needed, such as the “forgot password” link.

Next, we add the routes:
 1. Route::get(
 2. '/login/challenge',
 3. 'Auth\LoginController@challenge'
 4.);
 5. Route::post(
 6. '/login/challenge', [
 7. 'uses'=>'Auth\LoginController@validateChallenge',
 8. 'as' => 'login.challenge'
 9.]);

3 Laravel documentation: https://laravel.com/docs/5.2/mail

Listing 2.

 1. public function login(Request $request)
 2. {
 3. $this->validateLogin($request);
 4.

 5. if ($this->hasTooManyLoginAttempts($request)) {
 6. $this->fireLockoutEvent($request);
 7.

 8. return $this->sendLockoutResponse($request);
 9. }
10.

11. $credentials = $this->credentials($request);
12. $loginCheck = $this->guard()->validate(
13. $credentials
14.);
15.

16. if ($loginCheck) {
17. $code = $this->createOneTimeUseCode($credentials);
18. $this->emailOneTimeUseCode($credentials, $code);
19.

20. return redirect('/login/challenge');
21. }
22.

23. $this->incrementLoginAttempts($request);
24.

25. return $this->sendFailedLoginResponse($request);
26. }

Listing 3.

 1. private function createOneTimeUseCode($credentials) {
 2. $randomNumber = random_int(100000,999999);
 3.

 4. $user = User::where('email', $credentials['email'])
 5. ->first();
 6.

 7. DB::table('mfaCodes')->insert([
 8. 'user_id' => $user->id,
 9. 'code' => $randomNumber,
10. 'expires' => time() + 300
11.]);
12.

13. return $randomNumber;
14. }
15.

16. private function emailOneTimeUseCode($credentials, $code) {
17. Mail::to($credentials['email'])
18. ->send(new LoginCode($code));
19. }

Listing 4.

 1. class LoginCode extends Mailable
 2. {
 3. use Queueable, SerializesModels;
 4.

 5. /**
 6. * Create a new message instance.
 7. *
 8. * @return void
 9. */
10. public function __construct($code) {
11. $this->code = $code;
12. }
13.

14. /**
15. * Build the message.
16. *
17. * @return $this
18. */
19. public function build() {
20. return $this->view('mail.logincode')
21. ->with([
22. 'code' => $this->code
23.]);
24. }
25. }

CoderCruiseCoderCruiseCoderCruise

www.codercruise.com

7 days at sea, 3 days of conference

Leaving from New Orleans and visiting
Montego Bay, Grand Cayman, and Cozumel

July 16-23, 2017 — Tickets $295

Sponsors

Presented by

CoderCruise

Tickets $295

CIOReview

phparch.com
https://laravel.com/docs/5.2/mail

CoderCruiseCoderCruiseCoderCruise

www.codercruise.com

7 days at sea, 3 days of conference

Leaving from New Orleans and visiting
Montego Bay, Grand Cayman, and Cozumel

July 16-23, 2017 — Tickets $295

Sponsors

Presented by

CoderCruise

Tickets $295

CIOReview

https://www.codercruise.com/

20 \ April 2017 \ www.phparch.com

Demystifying Multi-Factor Authentication

And, finally, we add the methods in
Listing 6 to our controllers.

The validateChallenge method is
where all the checks happen. The first
thing we do is remove any expired codes
from the database to keep things clean.
We then find a code in the database that
matches the code submitted, also check-
ing to make sure the code is not expired.
If a code is found, we get the user ID
associated with the code and log the user
in using the built in Laravel functionality.
If a code is not found, we send the user
back to the challenge page with an error.

There are a few flawed items in this
example. For instance, we are not asking
for the email again from the user. This
makes this system a little more vulner-
able to brute force attacks, meaning
attempts could be made against the chal-
lenge page over and over with different
numbers until they get one that works.
One way to fix this would be asking for
the email address again for the code and
seeing if it matches the expected user.
Another option would be to set a cookie
during the first step of the login with a
unique code, and then in the email you
send, have a link that takes the user to a
URL with a parameter that has the same
code. There are many other options
available for helping solve this problem,
and I leave it up to you to decide what is
best for your application.

What’s Next?
There are many places you can go with

this. Although I used Laravel for the
sample code, the same logic can be used
in virtually any system with authentica-
tion.

The sample provided is what I like to call a poor man’s
version of Multi-Factor Authentication, mainly because it
is not as secure as some other options out there. Setting up
some of the other options, such as Google Authenticator, take
much of the same processes as the sample above. To set those
up requires a slightly different logic and some extra setup for
the end user.

I’d love it if one day every application required some form
of factored authentication to help keep my accounts safe.
Now that you know the basics of setting this up, go out and
re-vamp your applications to offer this extra step of security
to all of your users.

 Brian Retterer is a developer advocate
at Okta, a Silicon Valley cloud-based
identity service. He is focused on serving
the PHP community, and always excited
to represent and educate developers,
especially in the Midwest. From his home
base in Ohio, you can often find him
advocating for best practices in account
security and RESTful API design. You
can follow Brian on Twitter at @bretterer

Listing 5.

 1. @extends('layouts.app')
 2.

 3. @section('content')
 4. <div class="container">
 5. <div class="row">
 6. <div class="col-md-8 col-md-offset-2">
 7. <div class="panel panel-default">
 8. <div class="panel-heading">Multi Factor Code</div>
 9. <div class="panel-body">
10. <form class="form-horizontal" role="form"
11. method="POST"
12. action="{{ route('login.challenge') }}">
13. {{ csrf_field() }}

For the full listing, see this month's code archive

Listing 6.

 1. public function challenge() {
 2. return view('auth/challenge');
 3. }
 4.

 5. public function validateChallenge(Request $request) {
 6. DB::table('mfaCodes')->where('expires', '<', time())
 7. ->delete();
 8. $code = $request->get('code');
 9.

10. $codeEntry = DB::table('mfaCodes')
11. ->where('code', $code)
12. ->where('expires', '>', time())
13. ->first();
14.

15. if ($codeEntry) {
16. $this->guard()->loginUsingId($codeEntry->user_id);
17. return $this->sendLoginResponse($request);
18. }
19.

20. return redirect()->back()
21. ->withErrors([
22. 'code' => 'That code is not valid'
23.]);
24. }

phparch.com
https://twitter.com/bretterer

Each issue of php[architect] magazine focuses on an important
topic that PHP developers face every day.

We cover topics such as frameworks, security, ecommerce, databases, scalability,
migration, API integration, devops, cloud services, business development, content
management systems, and the PHP community.

Digital and Print+Digital
Subscriptions

Starting at $49/Year

http://phpa.me/mag_subscribe

Get php[architect] delivered to your
doorstep or digitally every month!

Borrowed this magazine?

https://www.phparch.com/magazine/2016-2/december/?utm_source=mag1216&utm_medium=pdf&utm_campaign=subscribe
https://www.phparch.com/magazine/subscribe

	Table of Contents
	PSR-7 HTTP Messages In the Wild
	Hannes Van De Vreken

	Integrating With APIs
	Caitlin Bales

	Demystifying Multi-Factor Authentication
	Brian Retterer

	Spring Renewal
	Rock Your Deployments With Rocketeer
	Matthew Setter

	Look Out for That Bus!
	Cal Evans

	Evaluating Value Objects
	David Stockton

	Taint Detection in PHP
	Chris Cornutt

	Easy Vagrant Environments
as a Service
	Joe Ferguson

	PHP—By the Numbers
	by Eli White

