
SampleAr�cle

PHP Application Hosting

mailto:careers@nexcess.net

The polyglot webtech conference on a cruise ship! 
Leaving from New Orleans and sailing the Caribbean.

July 16-23, 2017 — Tickets $295

www.codercruise.com

Sponsored by:

CIOReview

http://www.codercruise.com
http://www.codercruise.com
https://www.codercruise.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2017—musketeers.me, LLC
All Rights Reserved

MAY 2017
Volume 16 - Issue 5

2	 Uncanny PHP

30	 Education Station:
Qafoo Quality Analyzer
Matthew Setter

36	 Community Corner:
Become a Better Listener
Cal Evans

38	 Leveling Up:
Code Review
David Stockton

42	 Security Corner:
An OWASP Update—
The Top 10 for 2017
Chris Cornutt

45	 Artisanal:
Project Creation
Joe Ferguson

54	 finally{}:
Happiness is a Boring Stack
Eli White

Columns
Uncanny PHP
Features
3	 Visualization of Workflows in

an Event Sourced Application
Dustin Wheeler

12	 Look at the Vue From Here
John Congdon

16	 Cryptography Best Practices
in PHP
Enrico Zimuel

21	 PHP Prepared Statements
and MySQL Table Design
Edward Barnard

https://www.phparch.com/magazine
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

 www.phparch.com \ May 2017 \ 45

Artisanal

Project Creation
Joe Ferguson

Every developer has a set way of starting a new project. Most frameworks
have a linear path to getting started, and Laravel is no exception. With a
few commands, you can quickly get started configuring routes, writing controllers,
and saving data in a database.

You can install Laravel with Composer by:

composer create-project --prefer-dist laravel/laravel new-project

My preferred way to create a new project is by using the
Laravel installer. You can get the installer by adding it to your
system with Composer:

composer global require "laravel/installer"

Once installed you can use it
to create a new project in

a directory you specify.
larval new project will
create a new folder called
project and install the

latest version of Laravel.
The second command I

run on all of my Laravel proj-
ects adds Homestead. As you
read in last month’s column1
Homestead is my default
local development environ-
ment. I install Homestead
slightly different than many
people. Often, I am working

on projects I intend to open
source later, so I always bundle

my local development environ-
ment with my project files. This

way, I know my contributors can
easily spin up the same local devel-
opment environment I am using. This
helps eliminate many false errors and

bug reports, and ensures everyone
is on the same playing field during the

development of the application. I install
Homestead via Composer. This is also

known as the per project installation2 meth-
od. To install Homestead via Composer run:

composer require --dev laravel/homestead

1	 last month’s column:
http://phpa.me/April2017issue

2	 per project installation:
http://phpa.me/homestead-per-project

One of the reasons I enjoy working with Laravel is its
great developer experience. As web developers, we are often
worried about the user experience (as we should be). Lara-
vel always impresses me with the focus on making my job as
a developer easier. Most full stack frameworks came about
from the same reason: a developer was tired of writing boring
boilerplate code for every project and decided to bootstrap
pieces together. The power of packages and Composer allows
that to happen even easier than it did years ago. Laravel allows
developers to jump right into the business logic, the fun stuff
of the application they’re building.

Artisanal Frontend Development
My least favorite part of web development is frontend. I

have never had an eye for design, and while I have developed
a sense of what to look for in creating valuable user experi-
ences, I do not enjoy it. I do like JavaScript, but I don’t enjoy
the rate of change of the frontend ecosystem. This is one of
my favorite parts of Laravel: Laravel Mix. Mix is a collection
of packages and pre-built workflows that take the pain out
of nearly all the frontend bootstrapping of your application.
Mix will give you Bootstrap, jQuery, and Vue support right
out of the box. Coming in Laravel 5.5 there are even helper
commands which will configure a Vue.js frontend or ReactJS.
Laravel Mix removes a lot of the frustration of figuring how
to do something today when it comes to frontend develop-
ment.

Laravel 5.4 comes ready to work with Vue.js via Laravel
Mix. All you need to get started is to run:

npm install
npm run dev

Alternatively, you can also use yarn instead of npm if you
prefer. These two commands will install all the front end
dependencies to the typical node_modules folder in your project
and compile all the source assets from the resources/assets
folder into compiled files in your public/ folder. You will use
the compiled versions of the CSS and JavaScript files in your
templates and layout views. When you deploy to develop-
ment, you will want to run npm run production so a few extra
steps are taken to minify and optimize your files for produc-
tion to ensure the best possible frontend performance of your
application.

phparch.com
http://phpa.me/April2017issue
http://phpa.me/homestead-per-project

2017

This is a conference like no other. Designed to bring together
all the communities linked by the PHP programming language.

Together as the PHP community, the sum is greater than the whole.

November 15-16, 2017
Washington, D.C.

world.phparch.com

Call for Speakers 

Opens Soon!

https://world.phparch.com

 www.phparch.com \ May 2017 \ 47

Project Creation

Artisanal

2017

This is a conference like no other. Designed to bring together
all the communities linked by the PHP programming language.

Together as the PHP community, the sum is greater than the whole.

November 15-16, 2017
Washington, D.C.

world.phparch.com

Call for Speakers 

Opens Soon!

Artisanal Testing
Once I have my development environment and fron-

tend layout work configured, I start writing tests. I’m not a
Test Driven Development (TDD) evangelist by any means.
However, I know the value of tests and often find it easier
to start writing basic tests I know will fail and then begin to
work out the logic to make the tests pass. Some of you that are
TDD veterans will know the Red, Green, Refactor mantra; I
really like that approach.

Laravel Dusk is the newest testing package on the Laravel
block, and it really takes the already impressive ease of test-
ing to an entirely new level. Dusk utilizes the ChromeDriver3
package to run tests in a real Chrome browser. When you
run your Dusk test suite, you’ll see Chrome open browser
windows and execute the tests in front of you. It will send
detailed error reports when something goes wrong. You can
also run these tests from inside Homestead as of version 5.2.1.
Obviously, because Dusk is using a real browser, these tests
will take longer to process. Also, keep in mind these are not
unit tests. Laravel Dusk tests are acceptance tests. Accep-
tance testing is often used to verify a product is working as
expected. The tradeoff of using acceptance tests is they are
slower and often don’t show exactly where the problem may
be. Acceptance tests are not a replacement for unit tests. They
should be used together to ensure you have high test coverage
of your application so when a bug does show up it is easier to
find and fix.

One downside to Laravel Dusk is there is no way to reset
the database state after every run. Laravel 5.3 test helpers

(now known as BrowserKitTesting) could use Traits that
would reset the database after a test had completed, meaning
you were free to do what you wanted with the database and it
would be reset back the state it was before the tests ran. When
I do acceptance testing, I like to test everything going in and
out of the database is as I expect. This requires resetting the
database after each run. You can manually seed a second test
database with an SQL file import each time Dusk runs. This
is how I’ve managed to utilize the power of Dusk’s browser
testing and still not have to worry about altering my database.

As mentioned, the Laravel 5.3 testing helper functionality

3	 ChromeDriver: http://phpa.me/chrome-webdriver

has been renamed to a BrowserKitTesting package you can
easily add to your project via:

composer require —dev laravel/browser-kit-testing

You will then need to update your composer.json as in List-
ing 1.

Now you can write the Laravel 5.3 style tests. Make sure
your tests extend the BrowserKitTestCase class. You can also
copy tests from Laravel 5.3 to 5.4 applications with this meth-
od.

The advantage of using the BrowserKit Testing package is
you can easily write functional tests which do whatever you
want to the database and easily clean up after themselves.
Since they’re not using the ChromeDriver, they also run
slightly faster than the Dusk tests.

Artisanal Routing
Laravel 5.4 has four files in the routes folder to handle

routes. If you are new to Laravel, you should only worry
about web.php and api.php since these are the HTTP routes
and API routes respectively. Once you get farther down the
path with Laravel and need event broadcasting, you’ll refer to
the broadcast.php. Likewise you may never need console.php
unless your application is leveraging several complex Artisan
commands.

Laravel routing syntax is very expressive and easy to read
(just like the entire framework). The example route can be
seen here:

Route::get('/', function () {
 return view('welcome');
});

This is a simple GET route which returns a callback. This
callback returns a view named welcome.blade.php. Because
we are using the view helper in our callback, we do not have
to specify the full path to the views folder, nor the entire file-
name of the view. Routes can use any of the HTTP verbs such
as GET, POST, PATCH, PUT, or DELETE.

Route parameters allow you to capture a part of the URI to
pass into your callback. A common route you would expect
to return a display view of a widget may look like:

Route::get('/widgets/{id}', function ($id) {
 $widget = Widget::find($id);

 return view('widgets.view')
 ->with('widget', $widget);
});

This route passes the ID value from the URI to the call-
back, and the callback attempts to find the widget matching
the ID from the URI with an ID in the database. If a match is
found, the row is returned and passed to the widgets view to
be rendered.

Naming routes is the easiest way to keep your routes orga-
nized so a refactor down the road is even easier. The following

Listing 1

 1. "autoload-dev": {
 2. "classmap": [
 3. "tests/TestCase.php",
 4. "tests/BrowserKitTestCase.php"
 5.],
 6. "psr-4": {
 7. "Tests\\": "tests/"
 8. }
 9. },

phparch.com
http://phpa.me/chrome-webdriver

48 \ May 2017 \ www.phparch.com

Project Creation
Artisanal

is an example of a named route:

Route::get('/widgets/{id}', function ($id) {
 $widget = Widget::find($id);

 return view('widgets.view')
 ->with('widget', $widget);
})->name('widget.view');

This allows you to easily route to this function by its name,
such as when you want to redirect a user:

// Return a redirect to widget.view route
return redirect()->route('widget.view');

If you ever needed to change the URI of this route you
would only have to update the route in the routes file, not in
many different places in your application.

When building an application that needs a management
or administration control panel, you would normally group
all of those routes behind an /admin route. Such as /admin,
/admin/widgets or /admin/tasks. This can be easily accom-
plished by using route prefixing to keep your routes clean and
readable.

Route::group(['prefix' => 'admin'], function () {
 Route::get('/', function () {
 // Matches The "/admin" URL
 });
 Route::get('widgets', function () {
 // Matches The "/admin/widgets" URL
 });
});

You can also assign middleware to routes. We mentioned
creating a route prefix for grouping routes behind an /admin
prefix. Assuming these routes allow administrative tasks it
would make sense to use the auth middleware to secure these
routes. The auth middleware simply requires the request to
be from a user that has logged in. This keeps unauthenticated
users from accessing any of these routes.

Route::group(
 ['prefix' => 'admin', 'middleware' => 'auth'],
 function () {
 Route::get('/', function () {
 // Matches The “/admin” URL
 });
 }
);

Adding Middleware to Route Groups
By now your routes file is filling up with a lot of things

which don’t need to be there, like all of those callbacks. Call-
backs are great for small things and even for testing ideas
for logic before committing them to any needed abstraction
layers. I often keep a /test route in many of my applications
for this very reason during development. However, once
you’re happy with the functionality, you’ll want to move those
callbacks to a controller method which prevents your routes

file from becoming a hard to read thousand line monstrosi-
ty. This also allows a clean separation of duties and results in
much easier to read code.

We can refactor our earlier route by creating a
WidgetsController via the Artisan command:

php artisan make:controller WidgetsController

The Artisan command will create a basic boilerplate
controller for us so we can just drop in our logic from the
callback. Listing 2 goes in the app/Http/Controllers folder.

Since we have moved our callback into a controller method
named viewWidget we can now update our route:

Route::get(
 '/widgets/{id}', 'WidgetController@viewWidget'
)->name('widgets.index');

Now we can clean up our routes file and start abstracting
our callbacks into controller methods.

Cross-Site Request Forgery Protection
Laravel routing automatically handles Cross-Site Request

Forgery (CSRF) checking. Any route that points to POST,
PUT, or DELETE must have a CSRF token in the form
data. You only have to ensure you use the view helper
{{ csrf_field() }} in your form, no need to do anything on
the server side processing. Laravel will automatically reject
the request if the tokens do not match.

Artisanal Databases
Whether you are a die-hard Postgres or MySQL fan, Lara-

vel has you covered. Laravel ships with support for just about
any flavor of database being used by modern (and in some
cases legacy) web development.

The basics of connecting your Laravel application to a
database is to create a migration. If you have never worked
with database migrations, they are simply PHP class files that
tell an ORM (Object Relation Mapper)—Eloquent, in our
case—what to do with a database schema. A migration has
two methods: up and down. The up method is executed when

Listing 2

 1. <?php
 2.

 3. namespace App\Http\Controllers;
 4.

 5. class WidgetController extends Controller
 6. {
 7. public function viewWidget($id)
 8. {
 9. $widget = Widget::find($id);
10.

11. return view('widgets.view')
12. ->with('widget', $widget);
13. }
14. }

phparch.com

 www.phparch.com \ May 2017 \ 49

Project Creation

Artisanal

you run php artisan migrate and the
down method is executed when you run
php artisan migrate. Whatever you do
in the up method should be reversed in
the down method. An example migra-
tion to create our widgets table can be
found here in Listing 3, found in the
database/migrations folder.

The usefulness of the down meth-
od is frequently debated; some people
advocate there is no practical reason
you would ever roll back a migration
in production but instead always roll
forward to prevent data loss. Having
worked on Laravel applications with
sixty or more migration files spanning
over a year, I can certainly agree you

may never need all of those down state-
ments. I always recommend getting
comfortable with writing up and down
methods. The down method will force
you to think about what you’re doing to
the database in reverse and often times
you may discover a bug or some other
planned feature may have different
needs.

To apply the changes in your migra-
tion run the command:

php artisan migrate

Now we are ready to move on to the
model. A model is a class used to store
and retrieve information about a partic-
ular database table. We can easily create

a new model for our widgets table:

php artisan make:model Widget

Listing 4 shows our model stored in
the app/ folder.

We have added the protected array
fillable to allow us to set those fields
elsewhere in our application dynam-
ically. If you do not set the fields and
try to assign them you will get an error
(empty data saved). Note: you do not
have to specify the timestamp field in
your model; the framework handles
these fields for you automatically.

Now we have a migration which has
created a table for us—a model that
represents our table and will allow
us to store and retrieve data—we can
add a model factory. Model facto-
ries are somewhat new to the Laravel
framework, and I find them extremely
useful for creating sample data for your
database based on your models which
is even more useful for writing your
tests. As you can guess, a model factory
is a function you can call to create an
instance of your model.

Model factories are defined in the
database/factories/ModelFactory.php
file. You can see an example of the User
model here.

Listing 5 shows our model stored in the
database/factories/ModelFactory.php.

We are leveraging the use of the
package Faker4 to create fake data for
our widget. This callback will create a
new instance of a widget and save it to

4	 Faker:
https://github.com/fzaninotto/Faker

Listing 3

 1. <?php
 2.

 3. use Illuminate\Support\Facades\Schema;
 4. use Illuminate\Database\Schema\Blueprint;
 5. use Illuminate\Database\Migrations\Migration;
 6.

 7. class CreateWidgetsTable extends Migration
 8. {
 9. public function up() {
10. Schema::create('widgets', function (Blueprint $table) {
11. $table->increments('id');
12. $table->string('name');
13. $table->text('description');
14. $table->float('price', 8, 2);
15. $table->timestamps();
16. });
17. }
18.

19. public function down() {
20. Schema::dropIfExists('widgets');
21. }
22. }

Listing 4

 1. <?php
 2.

 3. namespace App;
 4.

 5. use Illuminate\Database\Eloquent\Model;
 6.

 7. class Widget extends Model
 8. {
 9. protected $fillable = [
10. 'name',
11. 'description',
12. 'price',
13.];
14. }

Listing 5

 1. /** @var \Illuminate\Database\Eloquent\Factory $factory */
 2. $factory->define(
 3. App\Widget::class,
 4. function (Faker\Generator $faker) {
 5. return [
 6. 'name' => $faker->word . ' Widget',
 7. 'description' => $faker->paragraph(3),
 8. 'price' => $faker->randomFloat(2, 20, 999999),
 9.];
10. }
11.);

phparch.com
https://github.com/fzaninotto/Faker

50 \ May 2017 \ www.phparch.com

Project Creation
Artisanal

the database using fake data. Faker will create a random word,
paragraph description, and price for our new widget. This
allows us to create sample data easily.

The first place I normally utilize model factories is in my
database seeder. I don’t want to use production data during
development, so I combine model seeders to create fake data
which mimics production data and uses database seeders to
create a realistic data set across all of my models. You can create
individual data seeder class files, or you can use the existing
DatabaseSeeder.php from the database/seeds folder. To create
20 widgets in our application, we can use a model factory in
the database seeder file: database/seeds/DatabaseSeeder.php
shown in Listing 6.

Similar to running our migration, we can seed our data-
base by running an Artisan command:

php artisan db:seed

Now, if we inspect the database, we can see 20 rows of
sample widget data. You can run database seeds as many
times as you want; they will continue adding new rows each
time.

If something happens to your database you can easily reset
everything with artisan:

php artisan:reset

This will rollback all of the migrations, and you can run the

migrate and seed commands again to set up your data.
From here, you’re ready to go forth and start building fresh

baked Artisanal applications with Laravel. You can easily set
up routes, controllers, and start accessing data in a database. I
look forward to seeing what you build.

 Joe Ferguson is a PHP developer and community organizer.
He is involved with many different technology related initia-
tives in Memphis including the Memphis PHP User group.
He’s been married to his extremely supportive and amazing
wife for a really long time and she turned him into a crazy cat
man. They live in the Memphis suburbs with their two cats.
@JoePFerguson

Listing 6

 1. <?php
 2.

 3. use Illuminate\Database\Seeder;
 4.

 5. class DatabaseSeeder extends Seeder
 6. {
 7. public function run() {
 8. factory(App\Widget::class, 20)->create();
 9. }
10. }

phparch.com
https://twitter.com/JoePFerguson
http://phpa.me/wpthesis-book

https://www.phparch.com/magazine

	Table of Contents
	Visualization of Workflows in an Event Sourced Application
	Dustin Wheeler

	Look at the Vue From Here
	John Congdon

	Cryptography Best Practices in PHP
	Enrico Zimuel

	PHP Prepared Statements and MySQL Table Design
	Edward Barnard

	Uncanny PHP
	Qafoo Quality Analyzer
	Matthew Setter

	Become a Better Listener
	Cal Evans

	Code Review
	David Stockton

	An OWASP Update—The Top 10 for 2017
	Chris Cornutt

	Project Creation
	Joe Ferguson

	Happiness is a Boring Stack
	Eli White

