
Fre
e

Ar
tic
le

PHP Application Hosting

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2017—musketeers.me, LLC
All Rights Reserved

JUNE 2017
Volume 16 - Issue 6

26	 Education Station:
Creating Images on the Fly
With Intervention Image
Matthew Setter

31	 Community Corner
Spurring Community with
Adam Culp
Cal Evans

33	 Level Up:
Procrastination and
Burnout
David Stockton

36	 Artisanal:
Basic Relationships
Joe Ferguson

43	 finally{}:
Planning for the Future
Eli White

Columns

Secure by Design
Features
3	 Nuclear Powered Software

Security
Chris Riley

9	 Cybersecurity State of the
Union
Mark Niebergall

15	 The Digital Speakeasy:
Secure and Anonymous
Access to Your Website
Dustin Younse

19	 Protocol Buffers
Christopher Mancini

https://www.phparch.com/magazine
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

10 \ June 2017 \ www.phparch.com

FEATURE

Cybersecurity State of the Union
Mark Niebergall

The cybersecurity landscape is continuously changing as new threats appear and attackers
adapt. Data breaches, cyber attacks, identity theft, and scams show up regularly in the news
and can have a significant negative impact to those affected by them. Keeping up with the
latest cyber security trends, understanding the threats, and keeping applications secure takes
an investment of time and effort.

In this article, we will review the current state of cybersecurity. Notable attacks will be
highlighted, trends in attacks will be analyzed, strategies to secure projects will be identified,
and PHP security-related features that can help increase application security will be covered.

Current State of
Cybersecurity

Cybersecurity1 is the “body of tech-
nologies, processes and practices
designed to protect networks, comput-
ers, programs and data from attack,
damage or unauthorized access” (1).
Cybersecurity is vital to any organi-
zation using computers and software.
Impacted organizations are found in
every nation and across all industries.

In organizations of all sizes, one
person may play multiple roles at the
same time. As organizations mature
and dedicate resources to IT, those
roles become more defined with
individuals focusing on specific func-
tions. Keeping an organization secure,
however, requires everyone to be mind-
ful of security in their particular roles.
Following best security practices and
adapting to recent trends and growing
threats can help strengthen the over-
all security posture of an organization,
see The alarming state of secure coding
neglect2. As a developer, writing secure
code is critical to the success of an orga-
nization achieving cybersecurity goals.

A majority of attacks, roughly 80%
(2), are from external actors. This can
range from malicious hackers, script

1	 Cybersecurity:
http://phpa.me/what-is-cybersecurity

2	 The alarming state of
secure coding neglect:
http://phpa.me/oreilly-state-secure-coding

kiddies, nation states, collectives, and
even customers. Attacks from external
sources can come in many forms from
phishing emails, to social engineer-
ing, or distributed denial-of-service
(DDoS). Building out strong security at
all layers of the OSI model and applying
defense in depth is key to preventing
these attacks from being successful.

Other attacks can come from inter-
nal sources or people associated with
the organization, including disgruntled
employees or someone with malicious
intent. Being mindful that attacks can
come not just from the outside but
the inside as well can help determine
where an organization may be insecure.
Applying proper access controls, avoid-
ing overreaching roles and permissions,
and preventing escalation of privileges
is a good place to start on strengthen-
ing security. Physical access controls
should also be used to protect physi-
cal hardware (laptops, desktops, USB
ports, servers, etc.) to prevent theft
and unauthorized access from internal
users. Hard drives used by employees
to access resources should be encrypted
to prevent data breaches in the case of
theft or loss.

Attackers often seek to gain unau-
thorized access to the most valuable
resources, especially data that may be
of financial value to them. This can
include data such as credit card infor-
mation, government IDs, and other
sensitive information. It is important to
identify the most valuable assets to an

organization and prioritize protection
for those. There may be standards or
regulations which apply to data used by
an organization, including the world-
wide Payment Card Industry Data
Security Standard (PCI DSS) for credit
cards. Other examples are the Health
Insurance Portability and Accountabili-
ty Act (HIPAA) in the United States for
medical data, and Article 8 of the Euro-
pean Convention on Human Rights in
the European Union for personal data.
Be sure to research and follow local
regulations covering data protection.

Notable Attacks
Over time, significant attacks have

the ability to change the cybersecuri-
ty landscape by highlighting new or
emerging threats. Some of the attacks
which have had major impacts on cyber
security are reviewed below.

KrebsOnSecurity.com: A major
DDoS attack was launched in retaliation
for exposure from investigations done
by Brian Krebs. The DDoS was massive

—665 gigabits/second—revealing an
enormous botnet using the Internet of
Things (IoT) which is becoming more
and more prevalent. Securing IoT
devices is often overlooked, and this
attack highlighted the need to improve
IoT security.

Target and Home Depot: Malware
installed on point-of-sale (POS)
systems resulted in the breach of
millions of credit cards. These attacks
directly resulted in an overhaul of how

phparch.com
http://phpa.me/what-is-cybersecurity
http://phpa.me/oreilly-state-secure-coding

 www.phparch.com \ June 2017 \ 11

Cybersecurity State of the Union

retail stores secure credit card readers
and transactions.

Yahoo!: Over 1 billion user accounts
were breached, and the incidents were
not made public for years. The compa-
ny was being sold to Verizon when the
breach was disclosed, which resulted
in a $350 million USD loss. This took
a big hit on high-level executives and
changed how they prioritize cybersecu-
rity and handle incidents.

Mt. Gox: In 2014, the company
discovered it had lost around 850,000
bitcoins valued at $450,000,000 USD.
This PHP shop had practiced poor soft-
ware development practices, including
no version control, inadequate testing,
and improper change management.
The company filed for bankruptcy and
closed its doors, see The Inside Story of
Mt. Gox, Bitcoin’s $460 Million Disaster3.

San Francisco Rail: A ransomware
attack took ticket machines offline. The
IT staff for the organization was able
to restore systems because they were
prepared.

These notable attacks have changed
the way organizations prepare for and
handle security incidents. Having plans
to recover, backups, incident handling,
and using secure coding practices
can help prevent attacks from being
successful and reduce the negative
impact of successful attacks.

Trends in Attacks
As attackers adapt to changes in tech-

nology, we see a shift in the trends of
attacks occurring. Two key reports help
track current patterns in attacks. Every
year Verizon puts out the Data Breach
Investigations Report4, which includes
charts and details about sources of
attacks, attack methods, targets, impacts
to organizations, and more. Every few
years OWASP releases an OWASP Top
10 list of the most critical web applica-
tion security risks. Regularly reviewing
these reports can help understand what

3	 The Inside Story of Mt. Gox, Bitcoin’s $460 Million Disaster: http://phpa.me/wired-mt-gox
4	 Data Breach Investigations Report: http://phpa.me/verizon-breach-report-2016
5	 An Overview of Threat and Risk Assessment: http://phpa.me/sans-threat-assessment

the current landscape looks like and
helps keep up with trends.

From the Verizon Data Breach
Investigations report, we see a trend
of increasing frequency of hack-
ing, malware, and social engineering
attacks. The primary reason is financial
gain. For web applications, hacking is
commonly used to breach systems by
using stolen credentials and known
security holes. Once the system has
been breached, the attackers make off
with the data they are after and try to
prevent detection. With credit cards
and identity theft, the information can
be resold for money, and back doors left
open can be sold off or used to continue
collecting information until the breach
is detected and closed off.

From the OWASP Top 10 list, we
can see the most commonly exploit-
ed vulnerabilities used by attackers
to achieve their goals. At the time of
writing this article, the 2017 list is in
release candidate stage and scheduled
for release in July or August. The list is:

1.	 Injection
2.	 Broken Authentication and

Session Management
3.	 Cross-Site Scripting (XSS)
4.	 Broken Access Control
5.	 Security Misconfiguration
6.	 Sensitive Data Exposure
7.	 Insufficient Attack Protection
8.	 Cross-Site Request Forgery

(CSRF)
9.	 Using Components with Known

Vulnerabilities
10.	Underprotected APIs
This list can be used in conjunction

with an application review and audit
to ensure those items are addressed.
For example, an application suscepti-
ble to SQL injection attacks should be
corrected urgently. Make sure authen-
tication and sessions are handled
correctly. Review the access control
model and fix any issues found, includ-
ing toxic roles, privilege escalation, and

insufficient policies. Review system and
application configurations to ensure
secure settings are used and sensitive
information is not included in version
control systems. Resource requests for
data and functionality should only be
granted for authorized and authen-
ticated subjects. Applications should
use secure coding practices to prevent
XSS and CSRF attacks. Libraries used
should be updated to include the latest
security patches. APIs should be locked
down with authentication to ensure
only authorized requests are allowed
and fulfilled. While this may seem like
a lot of areas to address, doing so will
significantly improve the security in a
web application.

Strategies to Secure
Projects

Many approaches can be used to
secure projects. Below are a few strate-
gies to help secure web applications.

Threat Analysis
It is important to understand the

most valuable assets to an organiza-
tion. According to SANS, An Overview
of Threat and Risk Assessment5, a threat
analysis tries to answer these questions:

1.	 What needs to be protected?
2.	 Who/What are the threats and

vulnerabilities?
3.	 What are the implications if they

were damaged or lost?
4.	 What is the value to the organi-

zation?
5.	 What can be done to minimize

exposure to the loss or damage?
Reviewing and answering these ques-

tions can help direct where to start
securing systems and data. If a partic-
ular application or data set is most
important and an organization relies
on them being secure to stay operating
then that is a good place to start. Iden-
tifying specific areas to work on and to
improve can help notch up the level of

phparch.com
http://phpa.me/wired-mt-gox
http://phpa.me/verizon-breach-report-2016
http://phpa.me/sans-threat-assessment

12 \ June 2017 \ www.phparch.com

Cybersecurity State of the Union

security and help protect what data and systems matter the
most.

Cryptography
Cryptography is the process of writing and reading secret

messages. In the computer world, cryptography is applied
to data. Data can be in transit and at rest. Symmetric-key, or
secret-key, cryptography uses a shared private key. Asymmet-
ric-key, or public-key, cryptography uses public and private
keys to encrypt and decrypt data.

Many attacks target sensitive information, including credit
cards, bank accounts, and government issued IDs. Cryptog-
raphy provides a way to secure the data from attackers. By
correctly encrypting sensitive information with strong encryp-
tion, data stolen during a breach is unusable to the attacker by
making it much harder, if not impossible, to disclose sensitive
data or personal information. It is critical to keep private keys
and passwords confidential to prevent encrypted data from
being decrypted by unauthorized parties. Properly encrypted
data can significantly decrease the negative impact a breach
has on an organization.

Patch Early, Patch Often
Keeping current with security patches can be a significant

means of thwarting attacks. Attackers often exploit known
vulnerabilities that have patches available. Applying patches
as soon as possible after they are released makes your appli-
cations harder to break into. This includes updating libraries
used, PHP versions, and other applicable patching to your
environments. Having unit tests in place can help ensure
updating versions doesn’t break features and functionality
within an application as these patches are applied.

PHP Security
PHP has a variety of features built-in to help improve the

security of applications. Below we’ll go through a few of these
important features, basic syntax, when to use them, and how
to leverage them to make your code more secure.

Hashes
PHP has a variety of hashing algorithms available to gener-

ate hashes. The function hash_algos returns an array of the
available algorithms, which includes MD5, Tiger, SHA-256,
and other common hashing algorithms. These can then be
used in hash($algorithm, $data) to generate the digest for the
specified data. It is important to note hash should not be used
for passwords; password hashing will be covered later in this
article. Hashing data should be used for verifying data integ-
rity, meaning the data hasn’t been altered from the original.
If it had been modified, then the hash would change. Often
you can find a message digest, which is the output of a hash
of the message.

6	 StupidPass: https://github.com/northox/stupid-password

It is important to understand hashes are one-way, meaning
you cannot take the output and determine the input. If you
can determine the input from the digest, then the hashing
algorithm is considered broken for cryptographic purpos-
es, but may still be useful in other applications. For example,
MD5 is considered cryptographically broken but is still
commonly used to determine message digests, including in
popular source control versioning. Recent research into colli-
sions with MD5 is, however, sparking a migration away from
using MD5 for digest purposes.

Password Hashing
Password hashing and checking is a very common require-

ment. PHP has built-in functionality to assist with this. To
hash a password, simply call:

password_hash($password, $algorithm, $options)

This function uses the latest recommended hashing algo-
rithm by default, and a cost of 10 by default, so you can
simply use password_hash($password) if the defaults meet
your requirements. Before PHP 7 there was a salt option, but
it’s deprecated because the randomly generated salt should be
used to maximize security. Executing the password_hash func-
tion multiple times with the same input will result in different
output because of the random salt being used, which means
users with the same password will have different hashes.

The password_hash function is used in conjunction with:

password_verify($password, $hash)

The $password is the password entered, and the $hash was
stored when the password was created. This provides a secure,
timing-attack safe, and easy way to hash and verify passwords
in PHP.

Enforce Strong Passwords
StupidPass6 can be used to ensure strong passwords are

used. It provides a series of checks against a string to see if it
is long enough, has four character sets (uppercase, lowercase,
numeric and special characters); is not a common password
(based on lists from research); and other optional checks to
determine if a provided password is sufficiently complex.

The dictionary used by StupidPass is entirely customizable,
and many dictionaries exist online which can be used to keep
current and catch trending catch phrases and commonly
used passwords.

To install StupidPass, use:

composer require northox/stupid-password

To use StupidPass with the default dictionary and options,
use:

$sp = new StupidPass();
$isValid = $sp->validate($passwordToTest);

2017

This is a conference like no other. Designed to bring together
all the communities linked by the PHP programming language.

Together as the PHP community, the sum is greater than the whole.

November 15-16, 2017
Washington, D.C.

world.phparch.com

Call for Speakers 

Open until June 23rd

phparch.com
https://github.com/northox/stupid-password

2017

This is a conference like no other. Designed to bring together
all the communities linked by the PHP programming language.

Together as the PHP community, the sum is greater than the whole.

November 15-16, 2017
Washington, D.C.

world.phparch.com

Call for Speakers 

Open until June 23rd

https://world.phparch.com

14 \ June 2017 \ www.phparch.com

Cybersecurity State of the Union

The maximum length is defaulted to 40, which can be over-
ridden. Environmental words, like the website name, can
be included in the checks as invalid passwords. The default
dictionary can be expanded and updated and then used. An
example of these options is:

$sp = new StupidPass($maxLength, $environmentalWords,
$pathToUpdatedDictionary);
$isValid = $sp->validate($passwordToTest);

mcrypt
PHP had mcrypt available for years, but it has been depre-

cated and should not be used with new code. If needed, it
can be made available with PECL. Unfortunately, it was built
on libmcrypt, which hasn’t been maintained for about a
decade. This led to an RFC by Scott Arciszewski calling for
the deprecation of mcrypt, and the RFC was approved in
March 2016. Any new development should not use mcrypt,
and any existing code using mcrypt should be upgraded to
use OpenSSL, libsodium, or another maintained and secure
library to encrypt and decrypt data, depending on the use
case and scenario. It’s nice to know mcrypt is still available if
necessary, but it is more important to know there are better
solutions available for your encryption needs.

OpenSSL
OpenSSL has a wide variety of asymmetric cryptography

functions and provides a variety of functionality for handling
certificates, encryption, and decryption. It is actively main-
tained, so it gets updates and security patches as needed. The
OpenSSL functions can be used with public and private keys
to encrypt and decrypt data. It can also be used to generate
and verify signatures, and for certificate signing requests
(CSR).

To create a new private key, use:

openssl_pkey_new($config)

$config is an optional array which can include key bits, key
type, if the key should be should be encrypted, and other
options. This function returns a resource, which can then be
used to decrypt data encrypted with the public key. To write
the private key to file for future use, call the function:

openssl_pkey_export_to_file(resource $privateKey, $filename)

For example, if you created a private key using
openssl_pkay_new you can write the private key to a file named
private.key.

Now that a private key has been created, a public key can
be generated using:

openssl_pkey_get_details($privateKey)

This returns an array with details about the private
key. Then use the array key key and write it to file or what-
ever else needs to be done. For example, you can use

file_put_contents('public.key', $details['key']) to create
a public key file based on the private key. The public key can
then be distributed to others so they can decrypt encrypt-
ed data from the holder of the private key and encrypt
data which can only be decrypted using the private key.
You can then clean up the private key from memory using
openssl_free_key($privateKey).

To use the public key to encrypt data, use:

openssl_public_encrypt($plaintext, &$encrypted, $publicKey)

This will save the plaintext message into the $encrypted
variable, which is the encrypted version of the message. The
encrypted data can then be sent to the holder of the private
key, who can then decrypt the message using:

openssl_private_decrypt($encrypted, $plaintext, $privateKey)

To use the private key to encrypt data, use:

openssl_private_encrypt($plaintext, &$encrypted, $privateKey)

The encrypted data can then be sent out to be decrypted
with the public key.

This process of using the private and public keys is used
not only to encrypt data but also to provide authentication.
Decrypting data with the public key helps others ensure data
was encrypted using the private key. This means as long as the
private key is kept private and not shared or leaked, then only
the private key holder can send encrypted messages that were
encrypted using that key and are the only ones who can read
data encrypted by the public key.

libsodium
Exciting news in the PHP community is the library libsodi-

um will be included in PHP as of PHP 7.2. Around the same
time mcrypt was deprecated, libsodium was on its way to
being included in the PHP core thanks to an RFC by Scott
Arciszewski approved in February 2017. Arciszewski also
points out this makes PHP the first programming language
to have a modern cryptography library built-in. Including
libsodium in the PHP core, means PHP now has a modern
cryptography library which can encrypt, decrypt, hash pass-
words, and perform other cryptography-related operations.

The key to using libsodium is knowing how to generate
random strings. This can be accomplished using:

$random = \Sodium\randombytes_buf($numBytes);

Where $numBytes is usually passed in using a Sodi-
um constant like \Sodium\CRYPTO_SECRETBOX_KEYBYTES or
\Sodium\Sodium\CRYPTO_BOX_NONCEBYTES or others. This can be
used to generate keys for encrypting and decrypting data, and
for generating a nonce, which is a random string to be used
once and only once.

There is a free online book created by Paragon Initiative
that is an excellent resource when using libsodium. The

phparch.com

 www.phparch.com \ June 2017 \ 15

Cybersecurity State of the Union

libsodium book7 includes terminology, usage, and examples
for encrypting, decrypting, hashing, and other features avail-
able in libsodium.

CSPRNG
The Cryptographically Secure Pseudo-Random Number

Generator, or CSPRNG, is used (as the name suggests) to
generate random numbers and bytes which are safe to use
with cryptography. It includes random_bytes($length) to
generate bytes and random_int($min, $max) to generate inte-
gers. These should be used instead of rand and mt_rand, which
are not safe for cryptographic purposes and do not produce
cryptographically safe values.

CSPRNG works differently depending on which operat-
ing system is used. On Linux machines, it uses a getrandom
system call. On Windows, it uses CryptGenRandom. On all other
operating systems, it uses /dev/urandom.

Conclusion
Cybersecurity is not only important today, but will

become more important over time. As applications become
more complex and more data becomes available online, the

7	 libsodium book: https://paragonie.com/book/pecl-libsodium

likelihood of being attacked only increases. Keeping current
with critical security trends and how to prevent successful
attacks can help keep a project secure and can be vital to the
overall success of an organization. Leveraging PHP features
for cryptography, using the reports and tools described in this
article, and being mindful of web application vulnerabilities
can make a monumental difference in improving the security
in projects being worked on.

 Mark Niebergall is a passionate
security-minded PHP software engineer
with over a decade of hands-on expe-
rience working on PHP projects. He is
the Utah PHP Users Group President
and often speaks at user groups and
conferences. Mark has a Masters degree
in MIS, minor in CS, is SSCP and
CSSLP certified, and volunteers for
(ISC)2 exam development. Mark is an
expert drone pilot, casual gamer, and
proudly teaching his kids how to push
buttons and use technology.

We want to make building a better team an easy decision for you.
Subscribe your team to Nomad PHP today and your rst month
is only $10. Also you will receive a free copy of “Creating a
Brown Bag Lunch Program.”

TTake the videos and host two Brown Bag Lunch events with your
team. en, if your team isn’t eager to learn more, simply
unsubscribe.

Visit nomadphp.com/build-better-teams/ to learn more.

Subscribe your team to Nomad PHP
today and your first month is only $10

phparch.com
http://paragonie.com/book/pecl-libsodium
http://nomadphp.com/build-better-teams/

https://www.phparch.com/magazine

	Table of Contents
	Creating Images on the Fly With Intervention Image
	Matthew Setter

	Spurring Community with Adam Culp
	Cal Evans

	Procrastination and Burnout
	David Stockton

	Basic Relationships
	Joe Ferguson

	Planning for the Future
	Eli White

	Nuclear Powered Software Security
	Chris Riley

	Cybersecurity State of the Union
	Mark Niebergall

	The Digital Speakeasy: Secure and Anonymous Access to Your Website
	Dustin Younse

	Protocol Buffers
	Christopher Mancini

