
July 2017
VOLUME 16 - Issue 7

www.phparch.com

Safe at Speed

Education Station:
Simple, Compact Time Range
Creation with Period

Community Corner:
Lend More Than Your Voice

Artisanal:
Forms And Request Processing

The Dev Lead Trenches:
So Now You’re a Team Lead

finally{}:
On Mental Health—My Personal Story

The Train Wreck: When
Safety Is Discretionary

Smart, Scalable Content
Distribution

Zero to Cloud in One Hour
With the Google Cloud

Modern JavaScript:
Moving Beyond jQuery

ALSO INSIDE

PHP Application Hosting

2017

This is a conference like no other. Designed to bring together
all the communities linked by the PHP programming language.

November 15-16, 2017
Washington, D.C.

Early Bird Pricing

until August 4th!

world.phparch.com

Sponsored by:

http://world.phparch.com
http://world.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2017—musketeers.me, LLC
All Rights Reserved

JULY 2017
Volume 16 - Issue 7

2	 Safe at Speed

29	 Community Corner:
Lend More Than Your Voice
Cal Evans

31	 June Happenings

32	 Education Station:
Simple, Compact Time
Range Creation with Period
Matthew Setter

36	 Artisanal:
Forms And Request
Processing
Joe Ferguson

43	 The Dev Lead Trenches:
So Now You’re a Team Lead
Chris Tankersley

46	 finally{}:
On Mental Health—My
Personal Story
Eli White

Safe at Speed
Features
3	 Zero to Cloud in One Hour

With the Google Cloud
Robert Aboukhalil

10	 Smart, Scalable Content
Distribution
Georgiana Gligor

16	 Modern JavaScript:
Moving Beyond jQuery
Derek Binkley

22	 The Train Wreck: When
Safety Is Discretionary
Edward Barnard

Columns

https://www.phparch.com/magazine
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

32 \ July 2017 \ www.phparch.com

Education Station

Simple, Compact Time Range
Creation with Period

1	 PHP’s DateTime library: http://php.net/class.datetime
2	 PHP’s DateTimeImmutable class: http://php.net/class.datetimeimmutable

Matthew Setter

For the longest time, I’ve enjoyed using PHP’s DateTime library1. I’ve always found it to
be relatively straightforward in creating DateTime objects for use with various applications I’ve
written.

However, one thing that isn’t very simple, nor intuitive, is the ability to create time ranges—
especially ones requiring some degree of sophistication, such as fiscal quarters, for financial
reporting requirements.

Sure, it’s easy enough to perform
basic time period arithmetic, such as
adding and subtracting days, compar-
ing two DateTime objects for equality,
or determining if one comes before or
after the other. However, creating a
time range has always been—at least for
me—quite a laborious process.

Let’s step through some code, so
you’ll understand what I mean visual-
ly. Let’s say I need to do some financial
reporting in my application, specifically
by fiscal quarter. As a rough example,
using PHP’s DateTimeImmutable class2,
I could work out a set of ranges as you
can see in Listing 1.

The code, as rough as it is, contains
a single function, getQuarter(),
which will return an array of two
DateTimeImmutable objects, based on
the function arguments supplied. Those
function arguments are the year and
the year’s quarter that you want the
range for.

You can see that it’s not too involved;
making use of a switch statement to
build the quarter value, based on one
of four acceptable options—naturally,
there can be only four. When calculat-
ed, it then uses a bit of sprintf magic
to build the string to initialize the
DateTimeImmutable object for the start
of the quarter.

Then, it creates a second one by call-
ing the first one’s add() method and
supplying a DateInterval object with
an interval of 90 days. Assuming those
two objects can be instantiated, they’re
returned in an array. If for some reason,
they cannot be, then an exception is
thrown.

In a more fully thought out applica-
tion, you could refactor the logic in any
number of directions to initialize them
more elegantly. However, it works.

Or, does it? If you were paying atten-
tion, you’d know there’s a key bug in my
code; the interval specification passed
to the new DateInterval object. What

Listing 1

 1. <?php
 2.

 3. /**
 4. * @param int $qtr
 5. * @param int $year
 6. * @return DateTimeImmutable[]
 7. * @throws Exception
 8. */
 9. function getQuarter(int $qtr, int $year): array {
10. if (in_array($qtr, [1, 2, 3, 4])) {
11. switch ($qtr) {
12. case (1): $quarter = 1; break;
13. case (2): $quarter = 4; break;
14. case (3): $quarter = 7; break;
15. case (4): $quarter = 10; break;
16. }
17. $q1Start = new DateTimeImmutable("{$year}-{$quarter}-01");
18.

19. // add 90 days to get next quarter
20. $q1End = $q1Start->add(new DateInterval('P90D'));
21. return [$q1Start, $q1End];
22. }
23. throw new \Exception('Range requested does not make sense');
24. }

phparch.com
http://php.net/manual/en/class.datetime.php
http://php.net/class.datetimeimmutable

 www.phparch.com \ July 2017 \ 33

Education Station

Simple, Compact Time Range Creation with Period

do you think it would print out if we
were to run it, using the code below?

$period = getQuarter(1, 2017);
printf (
 "Starts: %s. Ends: %s",
 $period[0]->format('d.M.Y'),
 $period[1]->format('d.M.Y')
);

Well, since January and March have
31 days, and February has 28, except on
a leap year, when it has 29—I should
know this as I got married on February

29—then, it won’t report the start and
end of the quarter correctly. Instead,
here’s what it will print out:

Starts: 01.Jan.2017. Ends: 01.Apr.2017

The start date is fine, but note the end
date of 01.Apr.2017. That’s the first day
of the following quarter, not the current
one. Given that, we’d have to add further
logic or fiddle with how we add to our
intervals to correctly calculate the quar-
ters, determining the number of days
within each.

We could instead use constants to do
this for us, avoiding the need to calcu-
late anything. To help visualize what I
mean, I did a little refactor of the origi-
nal code, which you can see in Listing 2,
that pulls the function into a class and
makes it a static.

However, the point remains, it would
start to get a bit more complicated.
Moreover, that’s just for the basic fiscal
quarter calculations. Oh, and there’s
another potential mistake. Have you
spotted it? Does quarter one in your
country’s fiscal year start on the first of
January? If you look around the world,
you’ll see it varies in all kinds of ways.

Instead of hard-coding the number
of days in each quarter, you could
also compute the end of a quarter by
adding a period of three months and
then subtracting a day but the point
remains, its not a straight forward
solution in any case.

Stepping beyond this initial example,
let's consider three follow-on questions:

•	 What if we wanted to calculate a
date range based on an arbitrary
month—allowing for leap years?

•	 What if we wanted to create one
based on a year?

•	 What if we wanted to create one
based on a semester?

That’s a lot of code for an edge case
we have to write (along with the requi-
site tests of course). If that were the
case, we’d have to start creating a lot
of code. Ideally, that’s not something
which we’d be keen on—especially if
it’s not the core logic that you’re tasked
with solving in your application by our
client. Don’t add to your technical debt,
let’s look for a third party library which
handles this for us.

Then there’s another problem that
may arise, one you don’t want to get
into: the case of the class that knew too
much, or the function that attempted to
do too much. For example, if you had a

Listing 2

 1. <?php
 2.

 3. class DateTimeRange
 4. {
 5. const DAYS_IN_Q1 = 89;
 6. const DAYS_IN_Q2 = 90;
 7. const DAYS_IN_Q3 = 91;
 8. const DAYS_IN_Q4 = 91;
 9.

10. /**
11. * @param int $qtr
12. * @param int $year
13. * @return DateTimeImmutable[]
14. * @throws Exception
15. */
16. public static function getQuarter(int $qtr, int $year): array {
17. if (in_array($qtr, [1, 2, 3, 4])) {
18. switch ($qtr) {
19. case (1):
20. $quarter = 1;
21. $interval = self::DAYS_IN_Q1;
22. break;
23. case (2):
24. $quarter = 4;
25. $interval = self::DAYS_IN_Q2;
26. break;
27. case (3):
28. $quarter = 7;
29. $interval = self::DAYS_IN_Q3;
30. break;
31. case (4):
32. $quarter = 10;
33. $interval = self::DAYS_IN_Q4;
34. break;
35. }
36. $q1Start = new DateTimeImmutable("{$year}-{$quarter}-01");
37. $q1End = $q1Start->add(
38. new DateInterval("P{$interval}D")
39.);
40. return [$q1Start, $q1End];
41. }
42. throw new \Exception('Range requested does not make sense');
43. }
44. }

phparch.com

34 \ July 2017 \ www.phparch.com

Education Station

Simple, Compact Time Range Creation with Period

function which printed a report, that looked a little like the
code below:

function generateReport($year, $quarter, $client, $format) {
 $qStart = new DateTimeImmutable(
 sprintf('%d-%d-01', $year, $quarter)
);
 $qEnd = $qStart->add(new DateInterval("P90D"));

 // ... rest of the reporting code
}

Please excuse the fact I’ve tried to exaggerate how much
it’s breaking SRP3, indulging in feature envy, by having the
class want to know about the client and the report format—in
addition to working out the date range. This is just to draw
acute emphasis to the point I’m trying to make.

But, this kind of code isn’t uncommon. In the past, I’ve
written code like this, and I’ve come across numerous code
bases where this is also the case. Now if we can assume this
has been written at least once, then I’d suggest it’s also fair to
assume it’s written in many other locations in our fictitious
code base as well.

This is our justification for creating a reusable library which
handles this for us, so we don’t have the need to create one for
ourselves. It’s for these reasons that I’m going to spend the
rest of the column introducing Period4, a Time range API for
PHP, maintained by The League of Extraordinary Packages5.
To quote the package’s website, here are the four key reasons
why you want to get to know this package:

1.	 It treats a time range as an immutable value object.
2.	 It exposes many named constructors to ease time

range creation.
3.	 It covers all basic manipulations related to time range
4.	 It’s framework-agnostic.
In short, by using it, we can offload a lot of work by using a

package that provides a well thought out, unified interface for
time range creation. Also, we can extract the creation of time
ranges to a single library.

Sound good?
Then let’s dig a bit deeper, and see what it has to offer. Here’s

a quick summary, before we dive into some code examples:
•	 Time ranges can be created based on day, duration,

month, quarter, semester, week, year, year interval, and
date points.

•	 Time ranges can be added, intersected, subtracted, vali-
dated, split, and compared.

3	 SRP: http://phpa.me/wikipedia-srp
4	 Period: http://period.thephpleague.com
5	 The League of Extraordinary Packages: http://thephpleague.com

•	 We can check if one has a longer or shorter duration
than another, diff one against another, check if one
contains another, or check if one contains a gap.

•	 And, quite a bit more.

Installation
It’s hardly worth mentioning, as I say this almost every

month. However, first we have to install Period and to do that,
we are going to use Composer. From the terminal, in the root
directory of your project, run:

composer require league/period

When that’s done, we’re ready to get to work.

Creating a Time Range for Quarters One
Through Four in 2017

Let’s start off by creating a time range for the four quarters
we created code for previously. To do that, here’s the massive
amount of code required:

$qOne2017 = Period::createFromQuarter(2017, 1);
$qTwo2017 = Period::createFromQuarter(2017, 2);
$qThree2017 = Period::createFromQuarter(2017, 3);
$qFour2017 = Period::createFromQuarter(2017, 4);

A var_dump to inpect one of these looks like Output 1.

In four lines of code, we now have four Period objects
modeling quarters one through four of this year. If we were to
print out any one of the objects, e.g., print $quarterFour2017;,
as Period implements the magic __toString() method,
then it would print out a string representation of the time

Output 1

 1. object(League\Period\Period)#15 (2) {
 2. ["startDate":protected]=>
 3. object(DateTimeImmutable)#13 (3) {
 4. ["date"]=>
 5. string(26) "2017-10-01 00:00:00.000000"
 6. ["timezone_type"]=>
 7. int(3)
 8. ["timezone"]=>
 9. string(3) "UTC"
10. }
11. ["endDate":protected]=>
12. object(DateTimeImmutable)#17 (3) {
13. ["date"]=>
14. string(26) "2018-01-01 00:00:00.000000"
15. ["timezone_type"]=>
16. int(3)
17. ["timezone"]=>
18. string(3) "UTC"
19. }
20. }

phparch.com
http://phpa.me/wikipedia-srp
http://period.thephpleague.com
http://thephpleague.com

 www.phparch.com \ July 2017 \ 35

Education Station

Simple, Compact Time Range Creation with Period

range. In the case of $quarterFour2017, it would print out
2017-10-01T00:00:00Z/2018-01-01T00:00:00Z. You can see that
it prints out UTC representations of the start and end dates
in ISO 8601 format.

What if we just wanted to know either the start or end
date? No problem! There are accompanying functions, which
return DateTimeImmutable objects. Here’s an example of using
the getStartDate() method, and then calling the returned
DateTimeImmutable object’s format method to print an ISO
8601 representation of the start date.

print $qFour2017->getStartDate()->format(DateTime::ISO8601);

Let’s get a bit more complex and look at determining the
intersection of two time ranges. Have a look at the code
below. Here, we’re first creating a time range for April 2017
($april2017). Then, we’re creating a time range for week 15
in 2017 ($week15), which is the second week of April this year.
Next, we create another Period object, which is the time range
where the two intersect, which is week 15.

$april2017 = Period::createFromMonth(2017, 4);
$week15 = Period::createFromWeek(2017, 15);
$intersection = $april2017->intersect($week15);

By calling the code below, we can see the start and end
dates, in a simpler format.

printf(
 "Start: %s / End: %s",
 $intersection->getStartDate()->format('Y-m-d'),
 $intersection->getEndDate()->format('Y-m-d')
);
// Prints out: "Start: 2017-04-10 / End: 2017-04-17"

A Little Time Manipulation
No, I’m not Doctor Who, but time manipulation is

something I always wanted to do more easily with DateTi-
meImmutable, but always found convoluted. Luckily, it’s
a lot simpler in Period, specifically, let’s see how to move
both forward and backward from the current Period, using
the same time scope. What’s extra cool about Period is that
regardless of how you created the Period object, you can use
the same code to move either forward or backward in time.

Say that we create a Period object, for quarter four of this
year, as in the following example:

$qFour = Period::createFromQuarter(2017, 4);

Now, we want to move forward to the next quarter, quarter
one, 2018. To do that, we’d make use of two Period functions:
getDateInterval() and next(), as follows:

$qNext = $qFour->next($qFour->getDateInterval());

6	 @settermjd: https://twitter.com/settermjd

To see when the next quarter starts:

print $qNext->getStartDate()->format(DateTime::ISO8601);
// 2018-01-01T00:00:00+0000

Both next() and its complement previous() take a
DateInterval object to determine where to move either
forward or back to. Given that, we can supply one by pass-
ing the value of the current Period object, by calling its
getDateInterval() method. Becuase that method is available,
irrespective of whether we created the Period object based
on a week, semester, quarter, year, or specific range, we can
now use a consistent interface, with minimal code, to move
forwards and backward in time. There’s no fiddly, tricky code
to remember, based on the type of time range we’ve created

In Conclusion
From the use case perspective, as well as the examples

presented, you can see just how handy this library is. Take
a look at the online documentation to unlock what else it
can do. It’s one I’m keen to make much more use of in the
future, and one I want to wholeheartedly thank Oscar Merida
for introducing me to it. Have a play around with Period and
tweet me your thoughts on it—I’m @settermjd6.

Matthew Setter is an independent software developer and
technical writer, focusing on security, continuous development,
and Zend Expressive. He’s currently writing a new book:
Zend Expressive Essentials, which teaches the fundamentals of
building applications with Zend Expressive. Share your email
address if you’re keen to know when it’s ready!

phparch.com
https://twitter.com/settermjd
http://php.ug

https://www.phparch.com/magazine

	Table of Contents
	Zero to Cloud in One Hour With the Google Cloud
	Robert Aboukhalil

	Smart, Scalable Content Distribution
	Georgiana Gligor

	Modern JavaScript:
Moving Beyond jQuery
	Derek Binkley

	The Train Wreck: When Safety Is Discretionary
	Edward Barnard

	Safe at Speed
	Lend More Than Your Voice
	Cal Evans

	June Happenings
	Simple, Compact Time Range Creation with Period
	Matthew Setter

	Forms And Request Processing
	Joe Ferguson

	So Now You’re a Team Lead
	Chris Tankersley

	On Mental Health—My Personal Story
	Eli White

