
August 2017
VOLUME 16 - Issue 8

www.phparch.com

Who Goes There?

Jumping Ship: A Holistic
Approach to Changing Jobs—
Part One

Get Started with
Zend Framework 3

Artisanal:
HTML Form Request Processing
and Testing

The Dev Lead Trenches:
The Code Monkey

Community Corner:
My Community Story

Security Corner:
Software Updates and
Ransomware

finally{}:
Building Connections

ALSO INSIDE

Google Authenticator for
your PHP Applications

Single Sign On—You’re
Probably Doing it Wrong

Education Station:
Managing Permissions with
Zend-Permissions-Rbac

omerida
Rubber Stamp

PHP Application Hosting

2017

This is a conference like no other. Designed to bring together
all the communities linked by the PHP programming language.

November 15-16, 2017
Washington, D.C.

Early Bird Pricing

until August 4th!

world.phparch.com

Sponsored by:

http://world.phparch.com
http://world.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2017—musketeers.me, LLC
All Rights Reserved

AUGUST 2017
Volume 16 - Issue 8

2 Who Goes There?

24 Education Station:
Managing Permissions with
Zend-Permissions-Rbac
Matthew Setter

28 Artisanal:
HTML Form Request
Processing And Testing
Joe Ferguson

32 The Dev Lead Trenches:
The Code Monkey
Chris Tankersley

35 Security Corner:
Software Updates and
Ransomware
Eric Mann

40 Community Corner:
My Community Story
James Titcumb

44 finally{}:
Building Connections
Eli White

Who Goes There?
Features
3 Google Authenticator for your PHP

Applications
Brian Retterer

8 Single Sign On—You’re Probably
Doing it Wrong
Arne Blankerts

13 Jumping Ship: A Holistic Approach
to Changing Jobs—Part One
Andrew Koebbe

17 Get Started with Zend Framework 3
Gary Hockin

Columns

https://www.phparch.com/magazine
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

8 \ August 2017 \ www.phparch.com

FEATURE

Single Sign On—You’re
Probably Doing it Wrong

Arne Blankerts

Requiring users to log in individually to all the websites they need for their work is more
than merely annoying: It wastes a lot of time and turns maintaining log-in credentials and
permissions into a nightmare for the administrative staff. Let’s see if we can fix that with a single
sign-on service.

Setting up multiple services to share a
common login without re-authenticat-
ing for every request or when switching
to a different application may seem like
a rather complex task at first glance.
And while of course we have some
things to consider, the final solution
does not have to be overly complex.

The basic concept of a single sign-on
service—SSO for short—is to allow a
user to log in (authenticate) once upon
requesting the first protected URL,
independent of the actual service visit-
ed, and maintain this state independent
of whatever other service is being used
next. When set up as a proxy, it’s the
SSO’s job to ensure the user is authen-
ticated before allowing the request to
be passed on to the actual service, and
to provide the application with identity
information so it has a means of know-
ing who its user is.

An SSO implies that the management
of user accounts is centralized. This
has quite some benefits for adminis-
trative staff, as they only have to create
one user account for all applications. It
also avoids the need to synchronize the
login details among various platforms
and taking their varying rules for pass-
words, user names, and other required
information into account.

Centralized authentication also bene-
fits the end user: No more password
changes for individual applications with
different requirements, and gone is the
need to remember where the password
was already changed and where the old
one is still valid. Because, let’s face it—
not everybody adheres to the rule to
not use the same password for multiple

services, anyway. And of course, there’s
no need to log in over and over again,
just to open all the applications needed
for the work day.

On the other hand, relying on a
single service turns authentication into
a so-called single point of failure—SPoF
for short. If the SSO service is not avail-
able, no login can be performed for any
application. For us and from a system
architectural point of view, this means
the availability of the SSO server must
be our highest priority when planning
day-to-day operation.

This seems far from being a new prob-
lem, though, and chances are, you even
have or had other single point of failures
already in your company or network: a
shared database server, for instance, or
the single uplink to the internet from
your office, that one network switch
or router, or even the single file server
where all the documents are stored.

Luckily, many possible solutions to
achieve high availability already exist:
From simple redundancies to fail-overs
and clusters, all we need to decide is
which one would fit our concrete needs
best.

As the benefits clearly outweigh the
potential problems, it’s time to finally
dive into developing our single sign-on
solution.

Authentication,
Authorization, or Both?

Granted, the common abbreviation
“Auth” isn’t very specific. Does it stand
for Authentication, Authorization, or
even both? And which one do we need

in our context SSO? To make things
complicated, the surprising answer is:

“It depends.”
Authentication, the act of verifying

that a person is who she or he claims to
be, is usually a prerequisite to gaining
access. Such a process can be imple-
mented in a fairly generic fashion and is
well understood. Determining whether
or not that person, after being authen-
ticated, is now authorized to perform a
certain action or is allowed to retrieve
the requested data is a more complex
task.

While basic ACL (access control lists)
constructs can be potentially managed
in a generic fashion, more fine-grained
restrictions may also be required.
For example, access to a profile was
granted by the ACL, but the amount
of data shown varies upon the type
of user. Particularly in CRUD-based
applications, determining upon save
which part of the profile changed and
whether or not the current user was
actually entitled to change that field can
be quite hard as well. Trying to find a
generic solution to both managing and
mapping these types of permissions
back into the application is likely to
cause sleepless nights for everybody
involved.

So to not drown in complexity, the
SSO should be limited to offering
authentication. And maybe check
whether or not the user is allowed to
use the application in question to catch
policy violations early on. Any addi-
tional authorization has to be delegated
to the application itself.

Before developing new software, it’s

phparch.com

 www.phparch.com \ August 2017 \ 9

Single Sign On—You’re Probably Doing it Wrong

always a good idea to look at preexist-
ing solutions. Maybe we don’t have to
program anything?

OAUTH?
Of course there are various techni-

cal approaches to SSO, as well as many
commercial solutions. When tasked
to implement a “simple” SSO service
themselves, many developers consider
OAUTH the way to go. OAUTH1 aims
to be an “open protocol to allow secure
authorization in a simple and standard
method from web, mobile, and desktop
applications”. As the mission statement
clearly focuses on authorization, this
is likely not what we need, but let’s
have a look anyway: OAUTH has been
designed to enable users to grant access
to functionality of the providing appli-
cation to a third party without revealing
the user’s credentials. A very important
aspect in the design of OAUTH is that
the third party software is not to be
trusted, from the providing applica-
tion’s perspective.

Beyond the authentication itself,
though, we don’t want to access any
functionality of the SSO server, let
alone want the user to be in control of it.
As this goes conceptually in the oppo-
site direction from where we are trying
to go, OAUTH cannot be the answer.
That saves us from looking into its tech-
nical aspects and we can check the next
candidate.

SAML?
Next on the list of things Google

usually returns when we’re searching for
SSO and PHP is SAML—the Security
Assertion Markup Language. SAML has
been developed by the OASIS consor-
tium (OASIS stands for “Organization
for the Advancement of Structured
Information Standards”). OASIS has
published a broad range of standards,
like the Open Document Format used
by LibreOffice or the Docbook format
used by the PHP Manual. SAML has
been around for a while, since 2001,
and is used by many big players in the
enterprise market. It is a standard for

1 OAUTH: http://oauth.net

exchanging authentication and autho-
rization data between security domains.
The powerful XML-based protocol uses
so-called security tokens containing
assertions to pass information about an
end user between an identity provider
and a service.

It not only sounds rather complex, it
comes with a lot of technical overhead
if all we want is a shared login.

Shouldn’t that be rather simple?

Naive Approach
Let’s take a step back and re-evalu-

ate our problem. Technically speaking,
our goal is to have multiple applica-
tions know the user is logged in and
authenticated. We do not care about
authorization at this point.

Assuming all the applications are
written in PHP and are hosted with-
in the same network or even the same
physical machine, the most basic and
simple solution could be to use a shared
session.

Except, this does not work: As soon
as there are additional application-spe-
cific values and potentially serialized
objects stored within the PHP session,
the idea collapses. Since by definition
all data in the session is shared, every
application needs to able to read and
work with the given data structure. We
would be restricted to scalar values if we
did not want incomplete class objects to
be created upon unserialization.

But that’s actually the least of our
problems. If we were to implement this,
we’d have a serious security issue on our
hands: We provided an application with
the means of modifying the session
state of an unrelated application! That’s
a big problem and definitely a no-go. To
fix that, we would need to separate the
authentication information from the
application session. That means we’d
have to deal with two sessions in one
PHP process. Sadly, the standard PHP
session extension does not support
that and we’d have to implement all the
session handling ourselves.

It might be a fun task to do but hard-
ly qualifies as a simple solution. And
sharing a session has another potential

drawback: What happens if not all
applications are written in PHP?

Shared sessions are out.

JSON Web Token
All server-centric approaches failed

for varied reasons, maybe we should
include the browser into the game
and use its ability to store information
for us. Given we cannot simply trust
anything stored on the client as plain
text because it could be manipulated,
we’d need to find a secure way to store
our authentication result in the browser.

One such way would be a JSON Web
Token, or JWT for short. Defined in
RFC 7519, JWTs are an open standard
that defines a compact and self-con-
tained way of transmitting information
between two parties in the form of a
JSON object. The information provid-
ed can be verified by checking a digital
signature and should thus be safe from
manipulation. JWTs can be signed by
either using a secret within the HMAC
algorithm or a public/private key pair.
All the nice encryption is actually rather
useless if an attacker can simply capture
the network traffic and extract the token
because of an unprotected transport.
For this approach to work, we have to
rely on HTTPS all the way. Luckily, that
shouldn’t be too much of a problem, as
plain HTTP is dying out anyway.

The web page about JWT2 explic-
itly mentions authentication as one
common usage scenario, along with
single sign on. There are client imple-
mentations for pretty much every
language; PHP has even various alter-
native solutions to choose from.

Sounds good! So maybe that’s the
way to go?

Getting all information about the
user without the need to call an API
or query an additional data source
certainly sounds like a plus. But how do
we get the information from the brows-
er to the server? While JWT defines the
required properties in the JSON string,
there is no official standard for sending
it. A recommended way seems to be the

2 JWT: http://jwt.io

phparch.com
http://oauth.net
http://jwt.io

Ubuntu User is the only magazine
for the Ubuntu Linux Community!

ORDER NOW!
Get 7 years of
Ubuntu User

FREE
with issue #30

BEST VALUE: Become a subscriber and save 35% off the cover price!
The archive DVD will be included with the Fall Issue, so you must act now!

Order Now! Shop.linuxnewmedia.com

Celebrating
25 Years of Linux!

UU25Years_LinuxNewMedia_1-1.indd 1 9/16/16 10:11 AM

http://shop.linuxnewmedia.com

 www.phparch.com \ August 2017 \ 11

Single Sign On—You’re Probably Doing it Wrong

Ubuntu User is the only magazine
for the Ubuntu Linux Community!

ORDER NOW!
Get 7 years of
Ubuntu User

FREE
with issue #30

BEST VALUE: Become a subscriber and save 35% off the cover price!
The archive DVD will be included with the Fall Issue, so you must act now!

Order Now! Shop.linuxnewmedia.com

Celebrating
25 Years of Linux!

UU25Years_LinuxNewMedia_1-1.indd 1 9/16/16 10:11 AM

use of a custom authorization header:

Authorization: Bearer <token>

While such a header can easily be added to any JavaS-
cript-borne request or any API call via http, there seems to
be no way to make the browser add such a header to the
outgoing request by itself. And why would there be, given
that that is what cookies were originally designed for. And,
sure enough, the JWT manual also mentions cookies as a
valid option. Cookies, though, are limited in their size which
might prove to be an issue, depending on how detailed the
user information is supposed to be. On the other hand, if the
data size were to outgrow the size restrictions of cookies, the
traffic overhead for every request would be of considerable
magnitude.

And that’s not all: Conceptually, JWTs are like a distribut-
ed cache. When using JWT for storing authentication data
on the client, the SSO server is never again bothered – that
is, until the JWT expires. That’s of course by intention and
makes a lot of sense for JWTs. But in case you want to change
access permissions, disable an account ,or merely add new
values, you’ll have to wait until the token has expired.

This, along with all the parsing and signing overhead, seems
again like the opposite of a simple solution.

User Tokens and Callbacks
That leaves us with the idea of a user token or identifier and

an API call from the application to our SSO service to get
the actual user information. The process could be straight-
forward: Once the user has been authenticated, a user token
or identifier is generated by the SSO service and stored as a
regular, shared cookie on the client. Equipped with this token,
the application could call an API provided by our SSO service
to retrieve additional information about the current user.

While the general idea of a simple session-like token to be
stored on the client sounds good, the rest seems awfully like
reinventing OAUTH. It also means we have to provide this
additional API and define the data structures, satisfying the
needs of all the applications we plan on protecting. And we
have to make every application call our API to get the infor-
mation.

So, maybe requiring callbacks is not yet a good solution.

Avoiding Callbacks
Truly separating concerns, the protected application

should be unaware of the SSO proxy setup. To achieve that,
the SSO would have its own session token, as described in
the last paragraph, but use a proxy approach to inject addi-
tional information for the application into the request before
forwarding it.

That way, the application will get what it needs without
making any API calls itself and the SSO proxy would be trans-
parently in charge of security at all times. Sounds good, but
also rather complicated? Actually, it’s not, as the following
examples will (finally) demonstrate.

Let’s start with the web server for the application. Since
we need an http server that can handle dynamic routing and
proxying, we’ll be using NGINX, Redis, and some simple
LUA:

The public-facing web server—reachable at “application.
example.com”—will execute the lua script access.lua to deter-
mine whether or not the request can and should be forwarded
to the actual application server—named application.local in
this example. It should be obvious that access to that server
should be restricted to only work via the SSO proxy in front
of it.

The main SSO logic is implemented in the access.lua script
in Listing 2.

The code above checks to see whether a UUID cookie is set
and, if so, whether matching data can be found in the Redis
key value store. If that did not work or if no such cookie was

Listing 2

 1. local uuid = ngx.var.cookie_uuid;
 2. local sso = 'https://sso.example.com/';
 3.
 4. if not uuid then
 5. ngx.redirect(sso);
 6. end
 7.
 8. local redis = require "resty.redis"
 9. local red = redis:new()
10. red:set_timeout(1000) -- 1 sec
11. local ok, err = red:connect("127.0.0.1", 6379)
12. if not ok then
13. ngx.say("failed to connect: ", err)
14. return
15. end
16.
17. local res, err = red:get(uuid)
18. if not res then
19. ngx.redirect(sso);
20. end
21.
22. if res == ngx.null then
23. ngx.redirect(sso);
24. end
25.
26. ngx.header["uuid"] = nil
27. ngx.req.set_header("X-USER-INFO", res);

Listing 1

 1. server {
 2.
 3. # ...
 4.
 5. server_name application.example.com;
 6.
 7. location / {
 8. lua_code_cache off;
 9. access_by_lua_file /var/www/lua/access.lua;
10.
11. proxy_set_header X-Real-IP $remote_addr;
12. proxy_pass https://application.local/;
13. }
14. }

phparch.com

12 \ August 2017 \ www.phparch.com

Single Sign On—You’re Probably Doing it Wrong

set, the user will be redirected to the
SSO service available at “sso.example.
com.”

In cases where the cookie was set and
there is matching data found in Redis,
it will be injected into the request as
an additional, custom header named
X-USER-INFO. And the request will be
returned to Nginx, which in turn will
proxy forward it to our application at
‘application.local’.

Our access.lua above relies on the
UUID cookie and on Redis to hold the
user details. For that to work, the user
data needs to be stored in Redis and the
cookie needs to be set upon successful
login. The following excerpt (Listing 3)
from the login demonstrates how this
would roughly look like in source code.

To complete the setup, we of course
still need the two remaining hosts,

“sso.example.com” as well as “appli-
cation.local”, to be configured. Both
are rather standard PHP-enabled web
server setups and thus do not provide
anything of real interest at this point.
Examples can be found in the accompa-
nying material to this article, for those
who are interested never the less.

Assuming we implement an actual
authentication mechanism at sso.exam-
ple.com, we now have a working single
sign-on system for all applications
within our domain.

Sending the user details as a header is

of course only one way of providing the
data. You are completely free to imple-
ment whatever format suits your needs.
For instance, we could enhance the lua
code to create a JSON web token to be
forwarded to the internal application
upon login, satisfy some BASIC HTTP
Auth , or emulate an LDAP or even TLS
Certificate DN.

TLS Client Side Certificates
Speaking of certificates: in case you

want to take single sign-on one step
further, you might consider avoiding
the actual log-in process completely by
deploying client side certificates.

Unknown to many, TLS certificates
can work both ways: the commonly
used way a server authenticates itself
to the browser but also the other way
around, having a client authenticate
itself to the server.

For this process to work, you need
to set up your own certificate authority
(CA) and provide the user with a certif-
icate signed by that authority. You could

also create a registration portal and use
the HTML5 form element ‘keygen’ to
have the browser create a key and then
sign the generated CSR. However, the
development of such a portal is out of
the scope of this article.

If you have your CA-signed client
certificate installed in the browser, you
can require its use by enabling the
respective functionality within NGINX
with only a few changes to any TLS-en-
abled server configuration. See Listing
4.

With the above server setup, every
request must have a valid client-side
certificate installed that is signed by the
referenced CA. If that is not the case,
the user will be redirected to the regis-
tration portal.

Client side certificates do not come
with the domain name restriction as
they do not use cookies. But they are
bound to the browser or even the
OS, making it a lot harder to share
the device if it does not come with a
multi-user environment or handling
individual profiles.

Arne Blankerts has already dealt with computers when
networking was still an adventure. As Co-Founder and
Principal Consultant of The PHP Consulting Company
(thePHP.cc), Arne helps his clients to develop software
successfully. He is author and maintainer of various
Open Source development tools, and is a regular presenter at
conferences. @arneblankerts

Listing 3

 1. <?php
 2.
 3. // ...
 4.
 5. if ($this->credentialsAreValid()) {
 6. $uuid = trim(
 7. file_get_contents('/proc/sys/kernel/random/uuid')
 8.);
 9. $data = $this->getUserData();
10. $ttl = 3600;
11.
12. $redis = new Redis();
13. $redis->connect('127.0.0.1', 6379);
14.
15. $redis->set($uuid, $data);
16. setcookie("uuid", $uuid,
17. time() + $ttl, '/', 'example.com', true, true);
18.
19. // ...
20. }
21.
22. // ...

Listing 4

 1. server {
 2.
 3. // ...
 4.
 5. ssl_client_certificate /etc/ssl/ca/certs/ca.crt;
 6. ssl_crl /etc/ssl/ca/private/ca.crl;
 7. ssl_verify_client on;
 8.
 9. error_document 403 = @register;
10.
11. location / {
12. fastcgi_param VERIFIED $ssl_client_verify;
13. fastcgi_param DN $ssl_client_s_dn;
14.
15. // ...
16. }
17.
18. location @register {
19. return 302 https://register.example.com;
20. }
21.
22. }

phparch.com
https://twitter.com/arneblankerts

https://www.phparch.com/magazine

	Table of Contents
	Google Authenticator for your PHP Applications
	Brian Retterer

	Single Sign On—You’re probably doing it wrong
	Arne Blankerts

	Jumping Ship: A Holistic Approach to Changing Jobs—Part One
	Andrew Koebbe

	Get Started with Zend Framework 3
	Gary Hockin

	Who Goes There?
	Managing Permissions with Zend-Permissions-Rbac
	Matthew Setter

	HTML Form Request Processing And Testing
	Joe Ferguson

	The Code Monkey
	Chris Tankersley

	Software Updates and Ransomware
	Eric Mann

	My Community Story
	James Titcumb

	Building Connections
	Eli White

