
October 2017
VOLUME 16 - Issue 10

www.phparch.com

Composing Software

Learning Machine

Learning, Part Two:

Building the Model

Education Station:

Doctrine Introduction,

Part Two

Artisanal:

Queueing with Laravel

The Dev Lead

Trenches:

Project Management

Toolbox

Community Corner:

The Imminent Release

of PHP 7.2

Security Corner:

Data Security Lessons

from Equifax

finally{}:

On Having Unique

Ideas

ALSO INSIDE

Uncommon Ab(Uses) of
Composer

Managing Private
Dependencies

Building Software that Lasts

Sam
ple

omerida
Rubber Stamp

PHP Application HostingSam
ple

2017

world.phparch.com
Sponsored by:

November 15-16, 2017
Washington, D.C.

Jessica Quinn
Kerri Miller

Nird LLC
Maude Lemaire

Slack Technologies

Laura Thomson
Mozilla

Andy Ihnatko
Chicago Sun–Times

Meet our

Keynotes!

Sam
ple

http://world.phparch.com
http://world.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2017—musketeers.me, LLC
All Rights Reserved

OCTOBER 2017

Volume 16 - Issue 10

2 Composing Software

24 Education Station:
Doctrine Introduction,

Part Two
Matthew Setter

31 Artisinal:
Queueing with Laravel
Joe Ferguson

36 September Happenings

38 The Dev Lead Trenches:
Project Management Toolbox
Chris Tankersley

41 Security Corner:
Data Security Lessons from

Equifax
Eric Mann

44 Community Corner:
The Imminent Release of PHP 7.2
James Titcumb

48 finally{}:
On Having Unique Ideas
Eli White

Features

3 Uncommon Ab(Uses)
of Composer

Alain Schlesser

8 Managing Private Dependencies

Andrew Cassell

12 Building Software that Lasts

Susanne Moog

15 Learning Machine Learning, Part
Two: Building the Model

Edward Barnard

Columns

Sam
ple

https://www.phparch.com/magazine
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

8 \ October 2017 \ www.phparch.com

FEATURE

Managing Private
Dependencies

Andrew Cassell

Using Composer and a private package server is the most
efficient way to manage private dependencies with PHP. I
recommend using the software as a service, Private Packagist, or
Satis, the open source, self-hosted package server. In this
article, I’ll show you how to easily set this up for your
own projects.

Writing software with reusable components is one of the
first lessons we learn as programmers. “Don’t repeat yourself…
Don’t repeat yourself… Don’t repeat yourself…” is the sacred
mantra of all enlightened software developers. Practicing the
DRY principle and reusing code are necessary to making soft-
ware which can be easily modified and maintained.

As good developers, we lean on open source frameworks
and libraries to handle the parts of our applications that are
not custom business logic. We call these reusable components

“dependencies” because our applications depend on them to
function. Leveraging frameworks and libraries as loosely
coupled dependencies will lead to better application security,
better architecture, and less code to write, test, and maintain.

The recent PHP renaissance brought about by the efforts of
the people behind Composer1,

Packagist2, and the PHP Framework Interop Group—
PHP-FIG3

—has made development with open source reusable compo-
nents much easier. If you still live in the “dark ages” and don’t
use Composer and Packagist, start doing so immediately. See
the documentation for more information about installing
and setting up Composer.

If a development team is working on multiple applications
or decides to break a large monolithic application into small-
er microservices, there arises a desire to share common code
across separate codebases. You have the choice to use either

“copy-and-paste programming” or to find a way to distribute
code as a package in a smarter, more efficient manner.

Your packages should be a single class or a collection of class-
es which serve a sole purpose. It should be used in a minimum
of two different codebases to be worth extracting into its own
library. The package must also be testable in isolation from
the application. However, it is perfectly fine if your private
packages rely on other open-source or private dependencies.

1 Composer: https://getcomposer.org

2 Packagist: https://packagist.org

3 PHP-FIG: https://php-fig.org

The next step is to create a new repository for the pack-
age and start building. You will want to make sure it is a
private repository just like your application. You can accom-
plish everything in this article using Git, Apache Subversion,
GitHub, GitLab, Bitbucket, or your own hosted repository
server. This article, however, will only use Git and GitHub to
simplify the examples.

You must then create a composer.json file in the root
of the package’s repository. Composer will look for this
composer.json file to load your package just like it does
with open source packages listed on packagist.org. This
composer.json file is very much like the one in your applica-
tion or what you see in every open source project which can
be installed with Composer.

The “name” is required, and Composer will use it
to load the package. This should be in the format of
name-of-your-organization/package-name. The autoload field
should be filled out with the namespace of your package
NameOfYourOrganization\\PackageName\\ so Composer can
use it to build the autoloader. In the example below, I chose to

Listing 1

 1. {

 2. "name": "organization-name/example-package",

 3. "description": "Example Package",

 4. "require": {

 5. "symfony/console": "^3.0",

 6. },

 7. "require-dev": {

 8. "phpunit/phpunit": "^6.3"

 9. },

10. "autoload": {

11. "psr-4": {

12. "OrganizationName\\PackageName\\": "src/"

13. }

14. }

15. }

Sam
ple

phparch.com
https://getcomposer.org
https://packagist.org
https://php-fig.org

 www.phparch.com \ October 2017 \ 9

Managing Private Dependencies

place the code in an src folder, but it’s a
matter of personal preference and can
be left blank if you place the code in the
root of the folder (like many Symfony
packages).

The rest of the composer.json file is
optional and will depend on the indi-
vidual requirements of your package. If
your package requires other dependen-
cies, you can list them in the require
or require-dev. In the example below,
this package relies on the open source

Symfony Console and PHPUnit for
testing.

Listing 1 shows package
composer.json:

Before you pull your package into
your application, you need to version
it. If you are still heavily developing the
package alongside the application, then
this can wait. We can use the “master”
branch of the library in our applica-
tion’s composer.json. But once you have
the package stable and ready for deploy-
ment, you should tag a release.

Semantic versioning is one of the
most important concepts in develop-
ing your own packages. As semantic
versioning is the most efficient way to
express the intent of your updates to
your fellow developers, your releases
should always use it, and Composer is
built with it in mind.

When applications using your library
have to be updated because of a change
in the library, this is known as a “break-
ing change.” In semantic versioning, we
always increment the “major” version
number for a breaking change. When we
add features that do not require anyone
to change their usage of the library, we
change the “minor” version number.

When we make bug fixes which don’t
cause breaking changes, we increment
the “patch” version number. Using nota-
tions like "^3.4" in the composer.json
file is recommended for our application
should continue to function with no
changes using versions “3.4.0”, “3.4.9”,

“3.5.19”, “3.71.0”, or “3.99999.99999”.

Composer will automatically pull in
the latest compatible version. Don’t be
afraid to increment the major version.
It’s a warning sign to your fellow devel-
opers to watch out for breaking changes.

There are two ways to bring your

packages into your application. The first
and simplest way is to have Compos-
er pull the package directly from the
repository using Git. However, this
will only work if your package has no
other dependencies, as Composer will
not recursively follow and pull in other
dependencies. Composer requires a
package server to pull in dependencies
of your package automatically. If you

are trying to keep things simple, this
can be an excellent choice until more
complex needs arise.

As a reminder, you must give all the
developers and servers read access
to the repository if you decide to
pull directly from the repository. It is
worth noting Composer’s documenta-
tion recommends you do not use this
manner of bringing in dependencies,
and instead use a package server like
Private Packagist. Also, it will slow your
deployments down quite a bit, cloning
the repositories instead of downloading

the code as a compressed file.

To add a private repository, you need
to let Composer know about the repos-
itory by adding repositories to the
JSON as shown in the example below.
In the following example, we are pulling
in our “example package” directly from
the repository.

Example application composer.json is

Figure 1

Listing 2

 1. {

 2. "name": "Example Application",

 3. "require": {

 4. "symfony/symfony": "\^3.2",

 5. "aws/aws-sdk-php": "\^3.19",

 6. "organization-name/example-package": "\^1.0"

 7. },

 8. "require-dev": {

 9. "phpunit/phpunit": "\^6.3"

10. },

11. "repositories": [

12. {

13. "type": "vcs",

14. "url": "git@github.com:/organization-name/example-package.git"

15. },

16.],

17. "autoload": {

18. "psr-4": {

19. "Organization\\Application\\": "src/"

20. }

21. }

22. }

Semantic versioning is one of
the most important concepts in
developing your own packages.

Sam
ple

phparch.com

10 \ October 2017 \ www.phparch.com

Managing Private Dependencies

shown in Listing 2.

The other option for pulling in your
private dependencies is to use a pack-
age server like Private Packagist or
Satis. They will download the code
from the Git repositories and create
compressed downloads of the packages
for your application to use. Once you
point them at the repositories of your
private packages, everything works just
as easy as the open source packages
from packagist.org. They will not be
in cloned repositories in your vendor
folder but will be downloaded files and
folders. Other helpful features include
mirroring GitHub downloads to speed
up deployments and prevent failure of
your deployments by hitting GitHub
rate limits, a user interface to view the
available versions, and an easier way to
manage access permissions.

Private Packagist4 will host a package
server which only your organization
can access for a monthly hosting fee.
Private Packagist is a great resource if
you want to free up more time for devel-
oping software, rather than managing
and securing servers. It requires very
little setup effort after giving it access to
your organization’s GitHub account, as
it automatically looks for composer.json
files in all of your private repositories.

Satis is a free, open source tool you
install, run, and manage on your own.
Setup is more complex than Private
Packagist but is still rather straight-
forward. Installation documentation
is available in the repository5. With
Satis, you have to manage a JSON file
containing a list of all of your package
repositories. The Satis server will also
need read access to all of those repos-
itories. Configuration is also required
to make Satis automatically resolve
and make available for download all
of the dependencies for your projects.
When you update your packages, it is
necessary to refresh its information
via a cron of the rebuild script, use
Git hooks, use GitHub webhooks, or a
manual rebuild. And you must set up
a method for authentication between

4 Private Packagist: https://packagist.com

5 repository: http://phpa.me/composer-satis

your application servers, development
machines, and Satis server.

Satis will generate downloadable files
for all of your private package reposi-
tories, so it is important to secure the

Satis server from unauthorized users.
To use Satis securely, you should use
it over SSH or use the HTTPS version
with a free SSL certificate from Let’s

Listing 3

 1. {

 2. "name": "Organization Package Server",

 3. "homepage": "https://satis.example.org",

 4. "repositories": [

 5. {

 6. "type": "vcs",

 7. "url":

"https://github.com/organization-name/example-package.git"

 8. },

 9. {

10. "type": "vcs",

11. "url": "https://github.com/organization-name/package-two.git"

12. },

13. {

14. "type": "vcs",

15. "url": " user@gitserver.example.org:/git/package-three.git"

16. },

17.],

18. "require-all": true,

19. "archive": {

20. "directory": "dist",

21. "format": "tar",

22. "prefix-url": "https://cdn.example.org/S3cr3tH4shF0ld3R",

23. "skip-dev": true

24. }

25. }

Listing 4

 1. {

 2. "name": "Example Application",

 3. "require": {

 4. "symfony/symfony": "^3.2",

 5. "aws/aws-sdk-php": "^3.19",

 6. "organization-name/example-package": "^1.0"

 7. },

 8. "require-dev": {

 9. "phpunit/phpunit": "^6.3"

10. },

11. "repositories": [

12. {

13. "type": "composer",

14. "url": "https://satis.example.org/"

15. }

16.],

17. "autoload": {

18. "psr-4": {

19. "Organization\\Application\\": "src/"

20. }

21. }

22. }

Sam
ple

phparch.com
https://packagist.com
http://phpa.me/composer-satis

 www.phparch.com \ October 2017 \ 11

Managing Private Dependencies

Encrypt6 while using an HTTP Header
field for token authentication. If possi-
ble, you should use a firewall or VPN to
make the Satis server accessible to only
your developers and servers or host
your downloads on a secure Amazon
AWS S3 bucket or similar CDN. It is
also possible to generate the Satis files
and downloads to a hashed folder to
provide a little bit of security through
obscurity.

Refer to Listing 3 for an example
satis.json configuration file:

You will then have to update your
application’s composer.json file to point
to the new Private Packagist or Satis
server. Satis is used in the example
below.

Example application composer.json
pointing at Satis server (see Listing
4).Once you have Private Packagist or
Satis working for you, you will eventual-
ly need to make changes to your package.
The best way to do this is to switch the
package to a branch instead of using the
versioned release tag and work on the
package as a cloned repository while

6 Let’s Encrypt: https://letsencrypt.org

it resides inside the application. When
you are done making changes, switch
back to a versioned release. To accom-
plish this, use the following steps:

1. Edit your application’s
composer.json and switch from a seman-
tically versioned release (e.g., "^1.0") to
"dev-master" and run composer update.
This will cause Composer to switch to a
cloned copy of the package’s repository.

2. Make your changes to the package
and test its operation within your appli-
cation. You should also run and update
any unit tests you have in the package.

3. After your tests have passed, you
can now version the package. You will
have to change your working directory
to make it the path of your package to
commit, tag a release, and push changes
for the package.

4. If you are using Satis, you must

now rebuild. Remember, it is possible
to automate the rebuild using cron, Git
hooks, or GitHub webhooks.

5. Update your application’s
composer.json file and point it to your
newly released version (e.g., "^2.0").

6. Run composer update and
Composer will switch back from a
cloned branch to a downloaded pack-
age.

7. Commit both the application’s
composer.json and composer.lock files
to your application’s repository.

Last, I want to thank everyone who
has contributed to Composer, Pack-
agist, and Satis. Jordi Bogianno, Nils
Adermann, Rob Bast, and many others
who have improved the PHP commu-
nity and coding practices more than
many of us could ever hope to do.

 Andrew Cassell is a full-stack web application developer
and designer in Herndon, Virginia. Andrew is an employee of
the non-profit Marine Spill Response Corporation, the largest
dedicated oil spill and emergency response organization in the
United States. He works on their website and internal web
applications. @alc277

Web Apps · Mobile Apps · E-Commerce

Developers who care about the code they create, the

communities they build, and the solutions the implement

www.diegodev.com

Sam
ple

phparch.com
https://letsencrypt.org
http://twiiter.com/alc277
http://www.diegodev.com

Sam
ple

http://phpa.me/mag_subscribe

	Table of Contents
	Uncommon Ab(Uses)
of Composer
	Alain Schlesser

	Managing Private Dependencies
	Andrew Cassell

	Building Software that Lasts
	Susanne Moog

	Learning Machine Learning, Part Two: Building the Model
	Edward Barnard

	Composing Software
	Doctrine Introduction, Part Two
	Matthew Setter

	Queueing with Laravel
	Joe Ferguson

	September Happenings
	Project Management Toolbox
	Chris Tankersley

	Data Security Lessons from Equifax
	Eric Mann

	The Imminent Release of PHP 7.2
	James Titcumb

	On Having Unique Ideas

