
www.phparch.com

Talking Code

Education Station:
How to Write Your Own Code Sniffer

Artisanal:
Queue Monitoring

The Dev Lead Trenches:
Measuring Success

Community Corner:
The elePHPants Thing…

Security Corner:
PHP, meet Libsodium

finally{}:
Poised for Growth

ALSO INSIDE

Chatbots and PHP

Artificial Intelligence (AI)—
The Future of Internet
Services

CQRS & Event Sourcing
in the Wild

Learning Machine Learning,
Part Three: Data Wrangling

December 2017
VOLUME 16 - Issue 12

omerida
Rubber Stamp

PHP Application Hosting

mailto:careers@nexcess.net
mailto:careers@nexcess.net

PHP[TEK] 2018
The Premier PHP Conference 

13th Annual Edition
MAY 31ST – JUNE 1ST

Downtown Atlanta

tek.phparch.com

Call for
Speakers now

open!

https://tek.phparch.com
https://tek.phparch.com

46 \ December 2017 \ www.phparch.com

Security Corner

PHP, meet Libsodium
Eric Mann

By the time you read this, the PHP community should have
introduced the world to the newest version of our favorite
language. This latest version adds better support for type
annotations, allows trailing commas in lists (just like JavaScript
and other dynamic languages) and introduced several security
improvements. The most notable security addition, however,
is the introduction of the Sodium cryptographic library as a core
extension.

Introducing Sodium
Sodium1 is a cryptographic library which supports

high-level abstractions for encryption, decryption, signing,
password hashing, and more. It is a fork of an earlier project,
NaCl2, Networking and Cryptography library.

The aim of both projects is to provide an easy-to-use, high-
speed tool for programmers to work with encryption safely
and with which they can build even higher-level tools for end
users.

Authenticated Encryption
Unlike many other cryptographic libraries, Sodium focuses

on authenticated encryption schemes. This means every piece
of encrypted data automatically carries a message authentica-
tion code (MAC) which can validate the integrity of the data
itself. If the MAC is found to be invalid, Sodium will imme-
diately error.

Using a MAC to validate an encrypted message isn’t itself a
unique trait. However, many other libraries will leave it to the
end developer to implement MAC validation. Sodium builds
this primitive into the library itself to better enforce best prac-
tices with message integrity.

Elliptic Curves
One of the ways Sodium truly shines is public key cryptog-

raphy. In this paradigm, every user has a pair of keys—one
key is kept secret while the other is shared with the world.
Anyone can encrypt a message for a particular user with their
public key; it can only be read with their private key. Likewise,
a user can sign a piece of data with their private key; a third
party can use the already-distributed public key to verify the
signature.

Many people are familiar with RSA3, which is an older style

1 Sodium: https://download.libsodium.org/doc/
2 NaCl: http://nacl.cr.yp.to
3 RSA: http://phpa.me/wikip-rsa-crypto

of public key cryptography which uses large prime numbers,
exponentiation, and modulo arithmetic to build security. The
keys involved need to be rather large to guarantee privacy;
the National Institute of Standards and Technology recom-
mends RSA keys4 of at least 3072 bits.

The strength of an RSA private key is tied both to its
length and to the computing power available to an
attacker. Breaking RSA generally requires guessing to
break the factorization of an encrypted message; a longer
key requires more computing power to decrypt and thus
makes each “guess” from an attacker somewhat costly. As
computers gain in speed and overall performance, keys
once thought to be secure become weak.

Sodium uses a different kind of mathematics for cryptogra-
phy. Rather than leveraging prime numbers and factorization,
Sodium uses mathematical calculations over a discrete field
defined by an elliptic curve5. The math itself is a bit more
complex but yields a similar public/private key relationship to
traditional RSA. Due to the math involved, however, a 256-bit
elliptic key is as strong as a 3072-bit RSA key.

Legacy Support
While Sodium is supported natively as of PHP 7.26, some

projects might want to leverage the same cryptographic inter-
faces on platforms running older builds of PHP. Thankfully,
it’s fully possible thanks to two projects.

Before Sodium was in PHP natively, it was available as a
PECL extension7. Anyone running at least PHP 7.0 can install
the PECL module and will have the same level of functional-
ity and support as those using the native builds in 7.2. Both
the PECL module and the core PHP extension are written by

4 RSA keys: https://www.keylength.com/en/4/
5 defined by an elliptic curve: http://phpa.me/wikip-elliptic-crypto
6 as of PHP 7.2: https://wiki.php.net/rfc/libsodium
7 PECL extension: https://pecl.php.net/package/libsodium

phparch.com
https://download.libsodium.org/doc/
http://nacl.cr.yp.to
http://phpa.me/wikip-rsa-crypto
https://www.keylength.com/en/4/
http://phpa.me/wikip-elliptic-crypto
https://wiki.php.net/rfc/libsodium
https://pecl.php.net/package/libsodium

 www.phparch.com \ December 2017 \ 47

PHP, meet Libsodium

Security Corner

the same authors, so there is zero trade-off on older environ-
ments.

Some developers have yet to update to PHP7, though. For
those teams, the sodium_compat8 module by Paragon Initiative9
is the way forward. This module implements Sodium in vanil-
la PHP if there isn’t a native extension available to expose the
API. It’s significantly slower to encrypt and decrypt this way
but means older servers can still leverage Sodium even with-
out a binary distribution.

In fact, sodium_compat is a solid approach for anyone working
with Sodium who wants to maintain backward compatibility
with PHP. The module will attempt to use the native PHP 7.2
features if they’re available. It will automatically look for the
PECL extension on older systems and use it if it’s supported.
Finally, on older systems with no PECL module for Sodium,
the polyfill will load a vanilla PHP implementation of the
cryptographic primitives. Using sodium_compat means you
can write your code once then defer to the library to pick the
best implementation for you.

8 sodium_compat: https://github.com/paragonie/sodium_compat
9 Paragon Initiative: https://paragonie.com

Secret-Key Crypto
Libsodium makes symmetric key cryptography (where a

single encryption/decryption key is shared by both parties
involved) simple with the sodium_crypto_secretbox() and
sodium_crypto_secretbox_open() functions. The first function
is used to encrypt a string message given a random nonce and
a specific symmetric key. See Listing 1.

The key is a shared secret; our nonce needs to be unique
for every encryption operation but does not need to be kept
secret so long as it continues to be randomly generated each
time. Decrypting our message is just like encryption, only in
reverse as in Listing 2.

Sodium uses authenticated encryption for every trans-
action. The message is both encrypted and affixed with a
message authentication code (MAC) to verify the message
hasn’t been tampered with. When decrypting the message,
Sodium will verify no one has tampered with the message
and automatically error if it’s been changed.

Listing 2

 1. <?php
 2. // Our known symmetric key
 3. $key = '...';
 4.

 5. // The original message nonce
 6. $nonce = '...';
 7.

 8. // Decrypt our message
 9. $plaintext = sodium_crypto_secretbox_open(
10. hex2bin($ciphertext), $nonce, $key
11.);

Listing 1

 1. // Create a random nonce
 2. $nonce = random_bytes(SODIUM_CRYPTO_SECRETBOX_NONCEBYTES);
 3.

 4. // Create a random key
 5. $key = random_bytes(SODIUM_CRYPTO_SECRETBOX_KEYBYTES);
 6.

 7. // Our plaintext message
 8. $message = 'This is a super secret communication!';
 9.

10. // Encrypted
11. $ciphertext = bin2hex(
12. sodium_crypto_secretbox($message, $nonce, $key)
13.);

Listing 4

 1. // The sender's public key
 2. $public_key = '...';
 3.

 4. // Our known private key
 5. $private_key = '...';
 6.

 7. // The original message nonce
 8. $nonce = '...';
 9.

10. // Decrypt our message
11. $plaintext = sodium_crypto_box_open(
12. hex2bin($ciphertext), $nonce, $public_key . $private_key
13.);

Listing 3

 1. // Create our public/private keypair
 2. $keypair = sodium_crypto_box_keypair();
 3. $private_key = substr($keypair, 0, 32);
 4.

 5. // Create a random nonce
 6. $nonce = random_bytes(SODIUM_CRYPTO_SECRETBOX_NONCEBYTES);
 7.

 8. // Our plaintext message
 9. $message = 'This is a super secret communication!';
10.

11. // Use the recipient's known public key
12. $public_key = '...';
13.
14.

// Encrypt our message for a specific recipient's public key
15. $ciphertext = bin2hex(
16. sodium_crypto_box(
17. $message, $nonce, $private_key . $public_key
18.)
19.);

phparch.com
https://github.com/paragonie/sodium_compat
https://paragonie.com

48 \ December 2017 \ www.phparch.com

PHP, meet Libsodium
Security Corner

Public-Key Crypto
Similarly, Sodium introduces simple methods to power

cryptograph with asymmetric keys (where a public key is
distributed for encryption, and a private key is used for
decryption). These functions are simply named sodium_cryp-
to_box() and sodium_crypto_box_open(). As with the secret
key model above, encryption requires a unique nonce for
every operation (and decryption requires the same nonce).
Refer to Listing 3.

When sending a message to a third party, you send the
ciphertext, the nonce that helped generate it, and your public
key as well. When Sodium begins decrypting the message, it
will check a message authentication code to authenticate the
message and will use your public key to both help authen-
ticate and decrypt the message. Not only can the recipient
verify you sent the message, but they can also verify one else
has manipulated it.

As with the symmetric decryption above, this operation is
authenticated. If the MAC affixed to the message fails to vali-
date, the message has been manipulated in transit, and the
decryption operation will abort.

Keeping Data Secure
As of November, PHP is the first language to ship with

a modern cryptographic library available by default and

without the need for third-party extensions. This new feature
introduces both secret and public key cryptography, with-
out requiring you to install anything else on the server. It’s
a fantastic way to leverage encryption which will run on any
system using PHP 7.2.

The choice of elliptic curves and specific algorithms makes
it easy for developers everywhere to utilize fast, secure crypto
without needing to take a graduate-level course in cryptogra-
phy. The higher-level abstractions provided by the library also
make it harder to make a mistake when using the exposed
cryptographic primitives.

As of PHP 7.2, we have the tools available to easily and
concretely keep our customers’ data secure. Let’s wield this
power responsibly and use it wherever possible!

 Eric is a seasoned web developer
experienced with multiple languages
and platforms. He’s been working with
PHP for more than a decade and focuses
his time on helping developers get
started and learn new skills with their
tech of choice. Eric works as a Tekton for
Tozny, a privacy and security-focused
startup in the Portland area. You can
reach out to him directly via Twitter:
@EricMann

C O D E H E A V Y, S H E N A N I G A N S F R E E : T W I L I O . C O M / B L O G

THE FUTURE OF COMMUNICATIONS
STARTS WITH TWILIO

phparch.com
https://twitter.com/ericmann
http://twilio.com/blog

http://phpa.me/mag_subscribe

