
www.phparch.com

Know Your
Tools

Artisanal:
Full-Text Searching with
Scout

The Dev Lead Trenches:
Coming Aboard!

Community Corner:
The Journey to Becoming
a Speaker

Security Corner:
Application-level Data
Security

Education Station:
Shifting and Masking
with a Side of Crypto

finally{}:
Blue Collar Coders

ALSO INSIDE

Containers Are a Pile of Lies!
Part One

Drupal for Symfony Developers

Love/Hate—The Dysfunctional
Relationship We Have With Tools

February 2018
Volume 17 - Issue 2

Sam
ple

Sam
ple

omerida
Rubber Stamp

PHP Application HostingSam
ple

Sam
ple

mailto:careers@nexcess.net

PHP[TEK] 2018
The Premier PHP Conference 

13th Annual Edition
MAY 31ST – JUNE 1ST

Downtown Atlanta

tek.phparch.com

Full schedule announced!

Talks from experts at MailChimp, Salesforce,

Etsy, Google, Oracle, Pantheon and many more!Sam
ple

Sam
ple

https://tek.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2018—musketeers.me, LLC
All Rights Reserved

February 2018
Volume 17 - Issue 2

2 Know Your Tools

26 Artisanal:
Full-Text Searching with Scout
Joe Ferguson

29 Security Corner:
Application-level Data Security
Eric Mann

34 The Dev Lead Trenches:
Coming Aboard!
Chris Tankersley

38 Community Corner:
The Journey to Becoming
a Speaker
James Titcumb

40 January News

41 Education Station:
Shifting and Masking with
a Side of Crypto
Edward Barnard

48 finally{}:
Blue Collar Coders
Eli White

Features
3 Containers Are a Pile of Lies!

Part One
Larry Garfield

10 Drupal for Symfony Developers
Antonio Perić-Mažar

22 Love/Hate—The Dysfunctional
Relationship We Have With Tools
Shahina Patel

Columns

Sam
ple

Sam
ple

mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

 www.phparch.com \ February 2018 \ 41

Education Station

Shifting and Masking with a Side of Crypto
Edward Barnard

The basics can be tricky. This month we take a careful walk-through of a few lines of
cryptographic code in PHP. This leads us through the difference between ones’ complement
and two’s complement representation. We achieve weirdness by combining logical AND with
integer addition.

Thirty-five years ago Ed Post of Tektr-
onix1 expressed the insecurities we all
felt as computer programmers. The
previous five years had produced the
Star Wars trilogy, but more important-
ly, those five years produced personal
computers.

In 1978, just two years after it was
founded, Apple won a contract with
the Minnesota Education Comput-
ing Consortium to supply 500
computers for schools in the state.
MECC had developed a sizable
catalog of educational software
(including the iconic Oregon Trail)
which it made freely available
to Minnesota schools. Soon the
MECC floppy disks and Apple II’s
became popular elsewhere across
the country. As Steve Jobs said in
a 1995 oral history interview with
The Computerworld Smithsonian
Awards Program:

“One of the things that built Apple
II’s was schools buying Apple II’s.”

How Steve Jobs Brought the Apple
II to the Classroom2

How is this a problem for profession-
al computer programmers? Looking
back from a generation later, the reason
is not obvious. Computer programmers
were highly paid with excellent job
security. The only computers available
were the million-dollar mainframes,
although departmental minicomputers

1 Ed Post of Tektronix:
http://phpa.me/real-programmers-pascal
2 How Steve Jobs Brought
the Apple II to the Classroom:
http://phpa.me/hackedu-steve-jobs

were becoming available for mere tens
of thousands of dollars. A comput-
er programmer was very much like a
rocket scientist since one requires a
rocket to be a rocket scientist, and one
requires a mainframe to be a computer
programmer.

A high school graduate (or dropout)
could, for example, become an excellent
auto mechanic, but not a rocket scien-
tist–or computer programmer. Steve
Jobs and Apple changed it all.

Real Programmers
Last month’s Education Station asked

“What is a Real Programmer?” without
directly answering the question. Ed
Post’s parody essay Real Programmers
Don’t Use PASCAL3 tells us the answer
regarding those job insecurities of a
generation ago:

But, as usual, times change…
anyone can buy and even under-
stand their very own Personal
Computer. The Real Programmer
is in danger of becoming extinct,
being replaced by high-school
students with TRASH-80s!

There is a clear need to point out
the differences between the typical
high-school junior Pac-Man player
and a Real Programmer. Under-
standing these differences will give
these kids something to aspire
to—a role model… It will also
help employers of Real Program-
mers to realize why it would be
a mistake to replace the Real

3 Real Programmers Don’t Use PASCAL:
http://phpa.me/ryerson-real-programmers

Programmers on their staff with
12 year old Pac-Man players (at
a considerable salary savings).
[Emphasis mine.]

This famous bit of hacker folklore
harkens back to the days of glory, or so
our elders would have us believe. We’ve
all heard the stories of when our elders
had to walk ten miles to school every
day, barefoot in the snow, uphill both
ways. The fears for our profession were
real. But how is this going to help us
today?

Keypunching (see Figure 1) has gone
the way of the electric typewriter. How
can it possibly be relevant? It isn’t. But
there is one related skill which we’re
going to see today: desk checking. We’ll
be using desk checking to walk through
our cryptography code in PHP.

Figure 2 is a sample program from
the original Fortran Programmer’s
Reference Manual4 published in 1956.
It is set up to be keypunched onto a
card deck. Each line will become one
80-column punched card.

Bernard Smith5 explains this problem
of the late 1970s:

Input to the mainframe was made
using a tray of punch cards…
and put my tray through a small
window…I did not know when my
particular program would be run.
I remember working on the basis
of 4 hours, and hoping I could get

4 Programmer’s Reference Manual:
http://phpa.me/fortran-ibm704-pdf
5 Bernard Smith:
http://phpa.me/bsmith-my-computers

Sam
ple

Sam
ple

phparch.com
http://phpa.me/real-programmers-pascal
http://phpa.me/hackedu-steve-jobs
http://phpa.me/ryerson-real-programmers
http://phpa.me/fortran-ibm704-pdf
http://phpa.me/bsmith-my-computers

42 \ February 2018 \ www.phparch.com

Education Station
Shifting and Masking with a Side of Crypto

two runs a day, plus one overnight…My office was a good
10-minute walk from the computer center, so after about
four hours I would walk (rain, shine, snow, etc.) up to
collect the results.

To put this in perspective, imagine developing a complex
web page. It takes four hours to load (on a good day), so you
get to see it once by mid-morning, once by mid-afternoon,
and you might sneak one more peek overnight. After load-
ing your web page, you’ll want to edit your code. Your code,
of course, exists as a tray of punch cards. So, to modify your
code, you need access to the keypunch in some other building.
Figure 3 shows a typical keypunch set aside for programmers’
use. The sign on the wall reads, “Express Keypunch: 3 minutes
or 6 cards (or until asked to leave!)”

Picture a typical program of, say, one thousand lines of code,
handwritten on 40 pages of coding forms. You would turn
it into the production keypunch queue. Take another look
at Figure 1, which shows production keypunching at Texas
A&M University. Your program is typed twice. The cards are
punched on the machine to the right (the “card punch”), and
then they are typed again at the machine on the left (the “card
verifier”). The program will be precisely as you hand wrote it,
typos and all.

You can see why desk checking was one of the skills taught
in computer engineering classes in college. Computer time
was an extremely scarce resource. (Imagine your profession-
al consternation at kids having an Apple II available in high
school when you were lucky to run your program ten or
twelve times in an entire week!)

Desk checking begins as simple proofreading. Specifically,
reading back through the stack of handwritten coding forms,
carefully looking for any errors. Picture a keyboard with

no backspace or
delete key, ever.

But wait! There’s
more! Remember
the inverted time
factor. When you
only get access
to the computer
once or twice a day,

6 bitwise: http://php.net/language.operators.bitwise
7 Scott Arciszewski: https://twitter.com/CiPHPerCoder

you’ll spend the rest of the day preparing to make the most of
this access. Unlike today, you are not the critical resource. The
mainframe computer is.

A real desk check is a structured walkthrough on paper. We
take a sample set of data and run through the entire program,
acting as the computer, using pencil and paper (and possibly
slide rule). This is the skill which remains valuable and which
we’ll be learning today. This is a skill practiced by every Real
Programmer before he or she walked to the computer center
(ten minutes, uphill both ways).

Logical and Bitwise Operators
Before we proceded, for reference the table below summa-

rizes PHP’s logical and bitwise6 operators are:

Example Name Result

$a & $b Bitwise And Bits set in two variables

$a | $b Bitwise Or Bits set in either of two
variables

$a ^ $b Bitwise Exclusive Or Bits set in one but not both
variables

~$a Bitwise Not Reverses the bit settings

$a << $b Shift Left Shifts the bits in $a by $b
steps to the left

$a >> $b Shift Right Shifts the bits in $a by $b
steps to the right

$a && $b Logical And True if both are true

$a || $b Locial Or True if either is true

$a xor $b Logical Exclusive Or True if only one is true

!$a Logical Not True is $a is not true, false
if $a is true

Note there are also logical and and or operators which have
a lower precedence than && and ||.

Real-World PHP Cryptography
Scott Arciszewski7 pointed me to a useful example of shift-

ing and masking in PHP. But, why do we care? Does shifting
and masking help us build web pages? To investigate the ques-
tion of “do we care,” I attended the Zend PHP Certification

Figure 1. Keypunch operator & verifier

By Cushing Memorial Library and Archives,
Texas A&M (Flickr: Card Preparation) CC BY
2.01, via Wikimedia Commons

1 CC BY 2.0:
http://creativecommons.org/licenses/by/2.0

Figure 2. Fortran Program
Figure 3. Express Keypunch

Sam
ple

Sam
ple

phparch.com
http://php.net/language.operators.bitwise
https://twitter.com/CiPHPerCoder
http://creativecommons.org/licenses/by/2.0

 www.phparch.com \ February 2018 \ 43

Education Station
Shifting and Masking with a Side of Crypto

Boot Camp8 taught by Christian Wenz9, the lead author of the
certification, at ZendCon 2017.

Not only are shifting and masking on the list of exam
topics10, they fall under PHP Basics. We spent quite a bit of
time on The Basics, proving indeed “the basics” can be quite
tricky!

The Constant-Time Character Encoding11 PHP library is
designed not to leak information about what you are encod-
ing/decoding via processor-cache misses. Anthony Ferrara12
explains the concept in his great PHP-specific article It’s All
About Time13.

Let’s walk through desk checking Hex::encode(string):
string and see how it works (Listing 1). We’ll be encoding raw
binary data into a regular string of hex (hexadecimal) digits.

Let’s encode the single character “Q”. You can check any
ASCII table14 online for the binary representation:

ord('Q') === 81 // decimal
=== 0x51 // hexadecimal
=== 0121 // octal
=== 0b 0101 0001 // binary, spaces added for clarity

Let’s begin walking through the calculation in binary.
Remember, we’re carefully walking through every line of
code. We don’t want to skip ahead, possibly missing an error,
or possibly failing to understand some subtlety.

1. Our input will be the string 'Q' (line 14 of Listing 1).
2. Line 15 initializes our output string $hex to the empty

string.
3. Line 16 sets our number of characters $len to 1.
4. The for loop, lines 17-27, will execute once. (Make

sure you see this is so!) Skipping over the loop for a
moment, note we will be unconditionally returning
$hex as our result. Since we are taking one trip through
the loop, we are actually executing encode() as pure,
straight-line code.

Divide and Conquer
We’ve taken a close look at this small PHP method; let’s

divide it up further for our detailed analysis.
1. Lines 18-21 initialize $chunk, $c, and $b.
2. Lines 24 and 25 do the calculation. The lines are identi-

cal to each other except line 24 operates on $b and line
25 operates on $c.

3. Lines 22-23 take the results of these calculations and
place the results into our output string $hex.

8 Zend PHP Certification Boot Camp: https://joind.in/talk/9e2dd
9 Christian Wenz: https://twitter.com/chwenz
10 the list of exam topics: http://phpa.me/zend-php-cert
11 Constant-Time Character Encoding:
http://phpa.me/pargonie-const-time-encode
12 Anthony Ferrara: https://twitter.com/ircmaxell
13 It’s All About Time: http://phpa.me/ircmaxell-about-time
14 ASCII table: http://www.asciitable.com/

This “divide and conquer” analysis is an important
desk-checking skill. We can focus in on each of those sections,
in order, without being distracted by what’s happening in the
other lines of code.

In the real world, of course, we have code editors and step
debuggers to do this sort of thing for us. There are times,
though, when it takes a human to grok the situation. Such
a human is showing the casual skills of a “Real Programmer.”

Definition15: The computer folklore term Real Program-
mer has come to describe the archetypical “hardcore”
programmer who eschews the modern languages and
tools of the day in favor of more direct and efficient solu-
tions–closer to the hardware.

Lines 18-19
Lines 18-19 unpack our ASCII “Q” into $chunk. What

actually happens? Let’s check the online documentation for
unpack16. Format C says the input is an unsigned char (8-bit
character). This sets $chunk to 0x51, which is ASCII “Q.”

We can guess Binary::safeSubstr() extracts our character
in a binary-safe fashion. A check of the library code17 shows

15 Definition: http://phpa.me/real-programmers-pascal
16 unpack: http://php.net/manual/en/function.unpack.php
17 library code: http://phpa.me/github-Binary-php

Listing 1

 1. <?php
 2. declare(strict_types=1);
 3.

 4. namespace ParagonIE\ConstantTime;
 5.

 6. /**
 7. * Copyright 2016 - 2017 Paragon Initiative Enterprises.
 8. * Copyright 2014 Steve "Sc00bz" Thomas (steve at ...)
 9. *
10. * Permission is hereby granted...
11. */
12.

13. class Hex {
14. public static function encode(string $bin_string): string {
15. $hex = '';
16. $len = Binary::safeStrlen($bin_string);
17. for ($i = 0; $i < $len; ++$i) {
18. $chunk = \unpack('C',
19. Binary::safeSubstr($bin_string, $i, 2));
20. $c = $chunk[1] & 0xf;
21. $b = $chunk[1] >> 4;
22. $hex .= pack(
23. 'CC',
24. (87 + $b + ((($b - 10) >> 8) & ~38)),
25. (87 + $c + ((($c - 10) >> 8) & ~38))
26.);
27. }
28. return $hex;
29. }
30. }

Sam
ple

Sam
ple

phparch.com
https://joind.in/talk/9e2dd
https://twitter.com/chwenz
http://phpa.me/zend-php-cert
http://phpa.me/pargonie-const-time-encode
https://twitter.com/ircmaxell
http://phpa.me/ircmaxell-about-time
http://www.asciitable.com/
http://phpa.me/real-programmers-pascal
http://php.net/manual/en/function.unpack.php
http://phpa.me/github-Binary-php

44 \ February 2018 \ www.phparch.com

Education Station
Shifting and Masking with a Side of Crypto

it’s a wrapper for PHP’s substr() or mb_substr().
I don’t know why we use two characters as input, rather

than a single character. I can speculate it has to do with allow-
ing for different endianness18, but we’d have to ask the author.

Line 20
Line 20 $c = $chunk[1] & 0xf; is pure PHP, but what does it

mean? Why use $chunk[1] rather than $chunk[0]? The answer
is buried in the notes19 for PHP unpack():

Caution If you do not name an element, numeric indices
starting from 1 are used. Be aware that if you have more
than one unnamed element, some data is overwritten
because…

Well, then. I don’t write unpack() code very often, and likely
you don’t either. I didn’t know one can use unpack() in such a
way it overwrites its own output. (Awesome (sarcasm). When
we have something which looks off, in this case, an array
starting with 1 rather than 0, it pays to take a close look at the
documentation (if any).

The & in line 20 says we are doing a bitwise AND. Last
month’s Education Station presented the truth table for AND:

1 1 0 0 Left operand
1 0 1 0 Right operand

1 0 0 0 Result

Our ASCII table told us “Q” is 0x51, or 0101 0001 in binary.
The same table would tell us 0xf is 1111 in binary. Or, expand-
ing to 8 bits, 0xf is 0000 1111 in binary. Let’s do the calculation.

0101 0001 $chunk[1] === 0x51 === "Q"
0000 1111 0xf

0000 0001 $c = $chunk[1] & 0xf;

Line 21
Line 21 $b = $chunk[1] >> 4; tells us to perform an arith-

metic shift right of four bits. The PHP bitwise operators20
documentation tells us “Right shifts have copies of the sign
bit shifted in on the left, meaning the sign of an operand is
preserved.”

0101 0001 $chunk[1] === 0x51
 >> 4 Shift 4 bits to the right

0000 0101 0x05 === 5 decimal

Finally! We have our starting point from lines 18-21:

$chunk = 0x51; // ASCII 'Q'
$c = 0x1; // Right-most (lower) hex digit
$b = 0x5; // Upper hex digit

18 endianness: https://en.wikipedia.org/wiki/Endianness
19 notes: http://phpa.me/php-unpack-notes
20 bitwise operators: http://php.net/language.operators.bitwise

Ones’ Complement
Before we tackle the unmitigated trickiness of our

constant-time encoding algorithm (lines 24-25), we need to
review ones’ complement and two’s complement arithmetic.
Complements are both simple and weird, which by definition
makes this fun!

In PHP, ~0 produces an integer which, in binary, is all ones.
0, in binary, is all zeroes (as you would expect), and PHP’s
bitwise NOT operator ~ says to flip all the bits, meaning,
change every 0 bit to a 1 and change every 1 bit to a 0. How
many bits is “all the bits”? It depends on the word size of your
computer. On a 32-bit machine you’d have 32 bits, and on a
64-bit machine, your result (all zeros becoming all ones) will
be a 64-bit integer.

For computing, a word is a fixed-size unit of data, or set
of bits, worked on by the processor. The word size affects
things like how many characters are supported, the largest
numbers which can be represented, and how memory is
addressed.

This is where the weirdness comes in. The bitwise operators
&, |, ^, ~, <<, and >> operate on PHP integers. They operate on
the underlying value—the binary representation—contained
in the integer. Wikipedia’s Ones’ complement21 article
includes a table to help explain the distinction. See the tables
below.

Bits
Logical
Value

Arithmetic
Value notes

(8-bit) (unsigned) (ones’
complement)

0111 1111 127 127
0111 1110 126 126
0000 0010 2 2 <– see below

0000 0001 1 1
0000 0000 0 0 <– “plus zero”

1111 1111 255 -0 <– “minus zero”

1111 1110 254 -1
1111 1101 253 -2 <– see below

1000 0001 129 -126
1000 0000 128 -127

For example, 2 and -2 show the bits flipped on each other:
0000 0010 2 2 1111 1101 253 -2
The PHP operators are fine. They are not weird. They each

do bit manipulations as expected. What’s weird is the number
representation. In Listing 2, we call the pattern of all zeroes

“plus zero”. “Plus zero” sounds a bit redundant, given zero is

21 Ones’ complement: http://phpa.me/wikip-ones-complement

Sam
ple

Sam
ple

phparch.com
https://en.wikipedia.org/wiki/Endianness
http://phpa.me/php-unpack-notes
http://php.net/language.operators.bitwise
http://phpa.me/wikip-ones-complement

 www.phparch.com \ February 2018 \ 45

Education Station
Shifting and Masking with a Side of Crypto

zero, and since the number is all zeroes, we’re okay.
What’s weird is we call the pattern of all ones “minus

zero.” Do we have to call it that? Listing 2 shows the integer
sequence as we count down: 2, 1, 0, -0, -1, -2. If ’s often used as
a method to represent signed numbers and preferable to ones’
you think about it, there can only be one integer between 1
and 3. It would be 2. In the same way, there can only be one
integer between +1 and -1. This would be zero. We do in fact
have two different ones’ complement representations of zero:
the all-zeroes pattern, and the all-ones pattern. Weird.

Signed Zero
You’re surely wondering whether we have to care the

ones’ complement notation includes something weird called
“minus zero.” We do; let’s take a look.

The first successful supercomputer, the CDC 660022, used
one’s complement arithmetic. Programmers had to allow
for both “plus zero” and “minus zero”. It was a great source
of coding errors. Modern computers have adopted a better
system of integer arithmetic, which means we do not have to
care. This is a good thing!

However, there is a catch. “The IEEE 754 standard for float-
ing-point arithmetic (presently used by most computers and
programming languages supporting floating-point numbers)
requires both +0 and -0.” Signed zero23 Now you’re aware

“minus zero” does matter when working with floating-point
numbers, we won’t mention it further.

Two’s Complement
Two’s complement24 notation solves the “minus zero” problem:

Compared to other systems for representing signed
numbers (e.g., ones’ complement), two’s-complement has
the advantage that the fundamental arithmetic oper-
ations of addition, subtraction, and multiplication are
identical to those for unsigned binary numbers (as long
as the inputs are represented in the same number of bits,
and any overflow beyond those bits is discarded from the
result). This property makes the system simpler to imple-
ment, especially for higher-precision arithmetic. Unlike
ones’-complement systems, two’s complement has no
representation for negative zero, and thus does not suffer
from its associated difficulties.

Conveniently, another way of finding the two’s comple-
ment of a number is to take its ones’ complement and add
one: the sum of a number and its ones’ complement is
all ‘1’ bits, or 2^*N*^ - 1; and by definition, the sum of a
number and its two’s complement is 2^*N*^.

22 CDC 6600: https://en.wikipedia.org/wiki/CDC_6600
23 Signed zero: http://phpa.me/wikip-signed-zero
24 Two’s complement: http://phpa.me/wikip-twos-complement

In short, PHP uses one’s complement for logical opera-
tions (the bitwise operators), but uses two’s complement for
arithmetic operations such as adding two integers. When we
combine those two modes in the same expression, analysis is
going to be tricky. Which is precisely our situation with lines
24 and 25.

Let’s see how this works. Using Listing 2, let’s convert 2 to -2:

0000 0010 Arithmetic 2
1111 1101 One's complement
1111 1110 Add 1 to form two's complement

I adapted Wikipedia’s Two’s complement25 table to show
how this works.

Original Binary Negate

0 0000 0000 0 0000 0000

1 0000 0001 -1 1111 1111

2 0000 0010 -2 1111 1110

126 0111 1110 -126 1000 0010

127 0111 1110 -127 1000 0001

-128 1000 0000 -128 1000 0000 <– weird

-127 1000 0001 127 0111 1111

-126 1000 0010 126 0111 1110

-2 1111 1110 2 0000 0010

-1 1111 1111 1 0000 0001

When we’re doing both arithmetic and logical operations
on the same integers:

• Arithmetic operations use two’s complement arithmetic
• Logical operations use ones’ complement bit manipula-

tion
Let’s do some code.

Line 24
Let’s calculate (87 + $b + ((($b - 10) >> 8) & ~38)) by

starting at the innermost expression and working our way
out. $b is 5, which is 0x5, or 0000 0101 in binary. Therefore
$b - 10 is 5 - 10, which is -5. We just learned -5, in PHP, is
in two’s complement representation. Which means we take 5,
in binary (0000 0101), flip the bits, and add 1. However, we
need to extend our calculation to 16 bits. You’ll see why at the
next step:

0000 0000 0000 0101 5
1111 1111 1111 1010 ~5 (flip the bits)
 +1 Add one

1111 1111 1111 1011 -5

Our next instruction (($b - 10) >> 8) is to shift the result
8 bits to the right. Remember right shifts propagate the sign

25 Two’s complement: http://phpa.me/wikip-twos-complement

Sam
ple

Sam
ple

phparch.com
https://en.wikipedia.org/wiki/CDC_6600
http://phpa.me/wikip-signed-zero
http://phpa.me/wikip-twos-complement
http://phpa.me/wikip-twos-complement

46 \ February 2018 \ www.phparch.com

Education Station
Shifting and Masking with a Side of Crypto

bit. We’re doing the calculation as a 16-bit integer, but the
result would be the same for a 32-bit or 64-bit word size. We
therefore lose the bottom, or rightmost, 8 bits (1111 1011) and
replace them with the next 8 bits from the left (1111 1111) or
as 16 bits (1111 1111 1111 1111).

Next comes ~38. Form the ones’ complement of decimal 38,
which is hexadecimal 0x26:

0000 0000 0010 0110 0x26 === 38 decimal
1111 1111 1101 1001 One's complement

Our next calculation is ((($b - 10) >> 8) & ~38). We’ve
done the calculations, so we know this reduces to a bitwise
AND:

1111 1111 1111 1111 (($b - 10) >> 8) result
1111 1111 1101 1001 (~38) result
------------------- & (bitwise AND)
1111 1111 1101 1001

Our original line 24:

(87 + $b + ((($b - 10) >> 8) & ~38))

Reduces to

(87 + $b + (previous result))`

We know $b is 5, so 87 + 5 is 92, which is hexadecimal 0x5C
or binary (0101 1100).

Oops! We have our previous result in binary, because we
were doing logical operations. Now we are doing arithmetic
operations, so we need to flip back to decimal numbers. Our
previous result (1111 1111 1101 1001) is a negative number.
We know this because the sign bit (the leftmost bit) is a 1. We
need to form the two’s complement:

1111 1111 1101 1001 Prior result
0000 0000 0010 0110 Flip the bits
 +1 Add 1

0000 0000 0010 0111 0x27 === 39 decimal

Given the two’s complement of (1111 1111 1101 1001) is 39,
this tells us (1111 1111 1101 1001) is decimal -39. Our calcu-
lation is now (92 + -39) which equals is 53.

Let’s quickly summarize the steps:
1. $b - 10: 5 - 10 === -5
2. -5 shifted right 8 bits === -1
3. ~38 === -39
4. -1 (which is all ones) AND anything is anything. -1 &

-39 === -39
5. 87 + 5 + -39 === 53
Remember we are encoding ASCII “Q” as a string of hexa-

decimal digits. “Q” is hexadecimal 51. By a remarkable and
happy coincidence, chr(53) === '5'.

Fast Forward
We noted lines 24 and 25 are identical except line 24 does

the calculation for $b and line 25 does the calculation with $c.
Line 24 began with $b having the value 5 and calculated the
result as 53.

When we evaluated lines 20-21 we noted $b is 5 and $c is 1.
Given 1 ($c) is four less than 5 ($b), we can infer line 25 will
calculate to 49. And, sure enough, ASCII ‘1’ is decimal 49.

Pack It In
Line 22 now reduces to:

$hex .= pack('CC', 53, 49);

Since we know there will only be one trip through the for
loop, and $hex began as an empty string, we know the above
line produces our final result. pack('CC', ...) produces the
ASCII characters corresponding to decimal 53 and decimal
49. 53 is ASCII ‘5’; 49 is ASCII ‘1’. Thus we have:

$hex .= '51';

Summary
When we need to take a careful look at how a piece of code

works, we can draw on the ancient art of desk checking. We
can be thankful its day-to-day necessity has gone the way of
the keypunch. However, you can use this technique “paper
prototype” or “whiteboard” a more complicated algorithm
before you and your team dive into your code editors by
walking for how it should work and what data (variables)
you’ll need to track.

We walked through a constant-time-encoding library for
PHP cryptography. We saw :

Hex::encode('Q') === '51';
ord('Q') === 0x51;

We distinguished between the PHP bitwise operators,
which work with ones’ complement representation, and the
PHP arithmetic operators, which work with two’s comple-
ment representation. We found it’s perfectly valid, though
weird, to combine the two types of operations in a single PHP
expression.

The term “Real Programmer” comes from a tongue-in-
cheek parody essay. It’s intended to be humorous rather than
to be taken seriously. A Real Programmer searches for weird-
ness in “The Basics.”

 Ed Barnard had a front-row seat
when the Morris Worm took down the
Internet, November 1988. He was
teaching CRAY-1 supercomputer
operating system internals to analysts as
they were being directly hit by the Worm.
It was a busy week! Ed continues to
indulge his interests in computer
security and teaching software concepts
to others. @ewbarnard

Sam
ple

Sam
ple

phparch.com
https://twitter.com/ewbarnard

Sam
ple

Sam
ple

http://phpa.me/mag_subscribe
http://phpa.me/mag_subscribe

	Table of Contents
	Containers Are a Pile of Lies! Part One
	Larry Garfield

	Drupal for Symfony Developers
	Antonio Perić-Mažar

	Love/Hate—The Dysfunctional Relationship We Have With Tools
	Shahina Patel

	Know Your Tools
	Full-Text Searching
	Joe Ferguson

	Application-level Data Security
	Eric Mann

	Coming Aboard!
	Chris Tankersley

	The Journey to Becoming a Speaker
	James Titcumb

	January News
	Shifting and Masking with a Side of Crypto
	Edward Barnard

	Blue Collar Coders
	Eli White

