
www.phparch.com

Long Running PHP

Artisanal:
Illuminating Lumen

The Dev Lead Trenches:
Reviewing Code

Community Corner:
Lessons Learned Running
a PHP User Group

Security Corner:
Signed Commits
With Git

Education Station:
Twitter for PHP
Development

finally{}:
How Many Tools?

ALSO INSIDE

PHP Daemons and
Long-Running
Processes

Evolving PHP

Containers Are a Pile
of Lies! Part Two

Hands on With
Accessibility

March 2018
Volume 17 - Issue 3

Sam
ple

omerida
Rubber Stamp

PHP Application HostingSam
ple

mailto:careers@nexcess.net

PHP[TEK] 2018
The Premier PHP Conference 

13th Annual Edition
MAY 31ST – JUNE 1ST

Downtown Atlanta

tek.phparch.com

Full schedule announced!

Talks from experts at MailChimp, Salesforce,

Etsy, Google, Oracle, Pantheon and many more!Sam
ple

https://tek.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2018—musketeers.me, LLC
All Rights Reserved

March 2018
Volume 17 - Issue 3

2 Editorial:
Long Running PHP
Oscar Merida

27 Artisanal:
Illuminating Lumen
Joe Ferguson

32 The Dev Lead Trenches:
Reviewing Code
Chris Tankersley

35 Security Corner:
Signed Commits With Git
Eric Mann

38 Education Station:
Twitter for PHP Development
Edward Barnard

44 Community Corner:
Lessons Learned Running
a PHP User Group
James Titcumb

46 February Happenings

48 finally{}:
How Many Tools?
Eli White

Features
3 PHP Daemons and Long-Running

Processes
Tim Lytle

9 Evolving PHP
Chris Pitt

16 Containers Are a Pile of Lies!
Part Two
Larry Garfield

22 Hands on With Accessibility
Derek Binkley

Columns

Sam
ple

mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

32 \ March 2018 \ www.phparch.com

The Dev Lead Trenches

Reviewing Code
Chris Tankersley

Code reviews are one of the best ways to help a team ensure they’re writing
the best code possible. In all of the jobs where we have done peer-lead
code reviews, we have caught more bugs and had better discussions about
code than in places or times where we just hammer code through the approval process. I
know, I know; we all write beautiful, bug-free code, so why go through the hassle of a code
review?

Think of code reviews as analogous
to test-driven development. In TDD,
we write tests so we can confidently say
we didn’t break anything, and provide
an additional layer of documentation
for how we expect code to work. The
computer ends up being our second set
of eyes constantly watching for regres-
sions in our code. If you use TDD, you
know how nice it is to refactor some
code, run tests, and know whether or
not your refactoring worked or even
made sense.

TDD also has a side effect of making
you think about the architecture of your
code. You will spend more time design-
ing and laying out classes and structure
than blindly coding until it works. This
leads to more maintainable and cleaner
code.

Code reviews provide a second set
of eyes looking at the architecture
and intent of code you write. If I am
working on an issue, I may make some
assumptions about how the system
works, what users may or may not want
to put up with, or just get too familiar
with the code to notice things that need
to be changed. Having another person
look at the code can expose logic bugs
or structural issues a computer just
cannot see.

Performing code reviews can give
you a better view of parts of code you do
not generally work on. I review Python
code from many of my coworkers
quite a bit, and it helps me understand
some of the changes they are making
on their side of the application. I can
better anticipate when we need to make
changes on the PHP side of the applica-
tion based on the code they are working

on, and we can have better discussions
about the direction of the software.

Code reviews will slow down how
quickly code makes it into the mainline
portion of your software, but I find the
benefits—maintainable code under-
stood by more than one person—far
outweigh the downsides.

Code Review Tools
Most source code hosting systems

provide a mechanism for code reviews.
I think the built-in tools for GitHub
and Gitlab work fairly well, and I more
than likely already have other tools
wired into these systems helping me
with code management, like Jenkin's
Pipeline system to handling automated
testing. These default code review tools
are usually more than capable of doing
what I need, but there are some other
options out there as well.

While I outline how to work with
GitHub and GitLab in this article, I
highly suggest using tools which inte-
grate directly with your workflow. For
example, if you are using the Atlassian
ecosystem you will want to look at their
Crucible code review tool. Any tool
that integrates deeply into your existing
software stack should provide you with
a better overall experience than trying
to bolt on random tools.

GitHub/GitHub Enterprise

Setup
Setting up a branch for code reviews

is fairly simple, if somewhat hidden. By
default, any PR can have comments on
it and only collaborators can merge a
PR. But you can go a step further and

enforce that reviews are done. This
gives you the added benefit of being
able to control when something is going
to get merged and make sure someone
has looked at it and given it a once over.

To enable reviews, go into the
Settings for your project. On the left-
hand menu click on Branches. In here
you’ll find a section called Protected
Branches. Here we can turn on the code
review enforcement.

Choose a branch from the drop-
down, and Github will forward you to
a configuration screen (see Figure 1).
The first thing you will want to do is
check the Protect This Branch option.
This will open up the rest of the config-
uration settings. You can now check
Require pull request views before
merging. This is the minimal amount
you have to do, so you can click Save
Changes at the bottom. Now any PRs
made against the selected branch will
have to have a code review applied.

If you want, you can also enforce
other rules. I generally also turn on
Dismiss stale pull request approvals
when new commits are pushed. This
makes it so if I approve a PR, but then
someone pushes more code to that
branch before I merge it, it revokes
the approval. This is a good idea (and
I think it should be on by default) since
you do not want someone to approve a
PR then slide some additional code in
at the last minute.

I do not particularly like the Require
review from Code Owner option as
I do not think it completely necessary
for someone to be a gatekeeper for a
feature or a set of code. That leads to

Sam
ple

phparch.com

 www.phparch.com \ March 2018 \ 33

Reviewing Code

The Dev Lead Trenches

siloing of information and tribal knowledge which might not
get passed on. If someone wants to review a block of code
they are not hugely familiar with, they can ask for help or
converse with the “code owner” about particulars. I much
prefer everyone being able to look at, modify, and critique
any part of a codebase.

Reviewing PRs
Once the reviews are configured, we need a PR that is trying

to merge into your newly protected branch. When creating a
new PR, you can assign a reviewer then, or you can assign a
reviewer later on.

When a new PR is generated against a protected branch,
just above the comment box on the “Conversation” tab will
be a big red X and messages stating the a review is required,
and that the PR cannot be merged until it has at least one
approved review.

Anyone can perform a review on a PR by going to the “Files
Changed” tab of the PR and clicking “Review Changes.” You
can provide overall feedback and give an approval or rejec-
tion of the PR. You can also go down and commit on specific
lines of code to start a review. At the end of your review you
will need to either approve or reject the PR.

If you have general comments, you can leave them without
needing to do a formal review. I do not do actual reviews until
I am completely ready to either reject or approve a PR, since
GitHub gets a bit funky about dismissing rejected reviews
with no code commits. A good example is just asking a ques-
tion about a line of code for clarification but then rejecting
the PR overall. GitHub does not like to allow you to dismiss
that rejection since no code was changed.

GitLab

Setup
I could not find any formal setup for enforcing code

reviews in GitLab. The discussion tools are available right
from the time a PR is generated, much like the general
GitHub comment tools. The big difference is there is no way
to prevent merging a PR until a code review has been done.
This is not the end of the world, however, it may require you
to do a bit more policing to make sure PRs are not going in
before they have been reviewed.

Merge request approvals1 are available in the Enterprise
edition of GitLab but not the Community Edition.

Reviewing PRs
Since the community edition of GitLab is more freeform

than GitHub, there is more of an onus on the developers to
follow a workflow than having the tools handle workflow for
you.

The first step is to submit a PR and assign it to someone to

1 Merge request approvals: http://phpa.me/gitlab-merge-approval

review. This reviewer will go through the code and comment
on individual lines. In GitLab this will generate Discussions,
and all of these discussions should be resolved by the time
the PR is ready to be merged. The first task will be for the
main reviewer to go through the code, comment on any lines
or changes needing clarification, and then pass it back to the
original developer for changes, clarification, and/or arguing.

When the original owner gets the PR back, they can
respond to any of the discussions that have been started.
This response can be in the form of code changes or further
discussion. Each discussion will have a Resolve Discussion
button that can close out a discussion.

Once all of the discussions have been resolved, the PR can
be merged.

Keep in mind a PR can actually be merged at any time, as
active and open discussions will not stop a PR from being
merged.

Code Review in Practice
This is technology, so there are some practices you can

follow to make sure that code review goes as smoothly, no
matter which side of the review process you’re on.

Don’t Punish
First and foremost, code reviews are not the time punish

or call out developers. The entire point of a code review is to
help each other write the best code possible, and demeaning
comments or attacks in a code review are a no-go. This makes
people not want to go through the review process for fear of
being singled out. You should also watch your tone during
the code review. Because you don’t have body language and
tone, text makes it easier to misinterpret comments as attacks;
try and be helpful and make sure comments do not seem
accusatory.

Ask Questions
You should ask questions about anything you are unsure of.

Things that are clear to me as the original developer might not
be clear to the reviewer; questions are a good thing. They can

Figure 1

Sam
ple

phparch.com
http://phpa.me/gitlab-merge-approval

34 \ March 2018 \ www.phparch.com

Reviewing Code
The Dev Lead Trenches

show potential clarity issues with the
code which can lead to maintenance
problems down the line. In the worst
case scenario, a question might lead to
a code change, but it might also lead to
a simple response and explanation.

Have Clear Intentions
In either questions or recommenda-

tions, be clear about your intentions.
Vague comments can just muddy the
waters, especially if changes need to
be made. Make it clear what the issue
is and how you think it can be resolved.
In the same vein, the original author
might have a different way of fixing the
issue. Compromise is a big deal, and
we are all adults. Getting code accepted
is not a win/lose situation. Work on a
common fix.

No One “Owns” Code
Avoid the concept of “code owner-

ship.” I mention it a bit above, but
when someone takes ownership of
code, it leads to rougher peer reviews.
By considering code “mine,” you will
be much more guarded against sugges-
tions and changes than you might be
about someone else’s code. Even if
another developer built a large chunk
of the code you are working on, we all
are working on the same project. Feel

free to consult or even have the original
author perform the review, but neither
side should assume just because some-
one wrote the code originally that it is
in some way “holy” or “perfect.”

Provide a Full Review
When you are reviewing code, make

sure you are providing a review of all
of the code that you can, not just a
single class or file. If you are not, just
leave comments or questions. Nothing
is more frustrating than resolving a
bunch of comments only to have more
appear just because the original review-
er did not look at all of the code. Each
review should be a full review of all of
the code.

Remember to not only look at the
syntax of the code, but also the archi-
tecture of the code. Provide feedback
on different tools or ways of performing
the same actions. Is a class doing too

much? Suggest breaking it into smaller
classes, or suggest different libraries to
use.

GitLab has a great article on perform-
ing code reviews2. I highly suggest
reading through it in addition to my
tips here.

Now Start Reviewing Code
I hope all of this helps convince you

code reviews are a good idea, and that
you can begin implementing them in
either your open source contributions
or at your place of work. Code reviews
can be as simple as looking over code
before it goes out, without any special-
ized set of tools. If you have dedicated
tools, it can be more more controlled
and be another gate keeper to making
sure the best possible code is going out.

2 performing code reviews:
http://phpa.me/gitlab-code-review

 Chris Tankersley is a husband, father, author, speaker,
podcast host, and PHP developer. He works for InQuest, a
network security companyin Washington, DC, but lives in
Northwest Ohio. He has worked with many different frame-
works and languages but spends most of his day working in
PHP and Python. He is the author of Docker for Developers
and works with companies and developers for integrating
containers into their workflows. @dragonmantank

php[podcast]
Hosted by Eric van Johnson and John Congdon, each
episode of our new podcast compliments the theme of
each magazine issue with interviews with contributors,
thoughts from the Editor-in-chief, and more.

Available in iTunes, Google Play, and via RSS.

Listen Today
https://phparch.com/podcast-subscribe

Sam
ple

phparch.com
http://phpa.me/gitlab-code-review
https://twitter.com/dragonmantank
https://phparch.com/podcast-subscribe

Sam
ple

http://phpa.me/mag_subscribe
http://phpa.me/mag_subscribe

	Table of Contents
	Long Running PHP
	Oscar Merida

	Illuminating Lumen
	Joe Ferguson

	Reviewing Code
	Chris Tankersley

	Signed Commits With Git
	Eric Mann

	Twitter for PHP Development
	Edward Barnard

	How Many Tools?
	Eli White

	PHP Daemons and Long-Running Processes
	Tim Lytle

	Evolving PHP
	Chris Pitt

	Containers Are a Pile of Lies! Part Two
	Larry Garfield

	Hands on With Accessibility
	Derek Binkley

