
www.phparch.com

Testing in Practice

Artisanal:
Authentication with
Laravel

The Dev Lead Trenches:
Ongoing Education

Community Corner:
What’s the Fuss About
Serverless?

Security Corner:
PHP Isolation in
Production

Education Station:
Build an API, Part One

finally{}:
On the Creativity of
Programmers

ALSO INSIDE

PHPUnit Worst
Practices

Easier Mocking
with Mockery

Testing Strategy
With the Help of
Static Analysis

Evolved PHP

April 2018
Volume 17 - Issue 4

omerida
Rubber Stamp

PHP Application HostingSam
ple

mailto:careers@nexcess.net

PHP[TEK] 2018
The Premier PHP Conference 

13th Annual Edition
MAY 31ST – JUNE 1ST

Downtown Atlanta

tek.phparch.com

Full schedule announced!

Talks from experts at MailChimp, Salesforce,

Etsy, Google, Oracle, Pantheon and many more!Sam
ple

https://tek.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Kevin Bruce, Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2018—musketeers.me, LLC
All Rights Reserved

April 2018
Volume 17 - Issue 4

2 Editorial:
Testing in Practice
Oscar Merida

27 Artisanal:
Authentication with Laravel
Joe Ferguson

31 The Dev Lead Trenches:
Ongoing Education
Chris Tankersley

34 Security Corner:
PHP Isolation in Production
Eric Mann

36 Education Station:
Build an API, Part One
Edward Barnard

44 March Happenings

46 Community Corner:
What’s the Fuss About
Serverless?
James Titcumb

48 finally{}:
On the Creativity of
Programmers
Eli White

Features
3 PHPUnit Worst Practices

Victor Bolshov

8 Easier Mocking with
Mockery, Part 1
Robert Basic

14 Testing Strategy With the
Help of Static Analysis
Ondrej Mirtes

20 Evolved PHP
Chris Pitt

Columns

Sam
ple

mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

14 \ April 2018 \ www.phparch.com

FEATURE

Testing Strategy With the Help
of Static Analysis

Ondrej Mirtes

When developing an application, our aim as software developers is
to make sure it does what it ought to do and to keep the number of
defects as low as possible. We should also strive to make our lives easier, to counter external
circumstances like tight deadlines and ever-changing requirements causing the exact
opposite. That’s why we’re always looking out for tools and practices to help us with our jobs.

In this article, I’d like to introduce you to the concept of type safety and how it can improve the
reliability and stability of your code. Once your code is more type-safe, and that fact is verified
by automated tools, you can cherry-pick which parts of your application need extensive unit
tests and where you can rely just on well-defined types.

Type System And Type Safety
To have a type system means to communicate what kinds

of values travel through code clearly. Since not all values can
be treated the same, the more we know about them, the better.
If you currently don’t have any type hints at all, adding infor-
mation to the code whether you’re accepting int, float, string
or bool can go a long way.

But when a function declares it accepts an integer, does
it really mean any integer? Just a positive integer? Or only
a limited set of values, like hours in a day or minutes in an
hour? Trimming down possible inputs reduces undefined
behavior. Going down this road further means you have
to start type-hinting your own objects which comes with

additional benefits—not only that we know what we can pass
to the function, it also tells us what operations (methods) the
object offers.

I’m not saying scalar values are never enough, and you
should always use objects, but every time you’re tempted
to type hint a string, go through a mental exercise on what
could go wrong with the input. Do I want to allow an empty
string? What about non-ASCII characters? Instead of putting
validation logic into a function that does something with a
scalar value, create a special object and put the validation
logic in its constructor. You don’t have to write the valida-
tion in each place where the object is accepted anymore, and
you also don’t have to test the function’s behavior for inval-
id inputs provided the object cannot be created with invalid
values.

For example, you might have a function which accepts a
string for an email address, but you must check if the email
is valid.

function sendMessage(string $email) {
 if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {
 throw new \InvalidArgumentException(
 "Invalid email string"
);
 }
 // do something
}

Instead, you can flip it and make your function—and any
other one—explicitly expect an EmailAddress object as in
Listing 1.

Once your codebase is filled with type hints, IDEs and stat-
ic analyzers know more about it, and you can benefit from
them. For example, if you annotate a property with a phpDoc
(unfortunately there’s no native support for property types
yet), these tools can verify:

Listing 1

 1. class EmailAddress
 2. {
 3. /** @var string */
 4. private $email;
 5.

 6. public function __construct(string $email) {
 7. if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {
 8. throw new \InvalidArgumentException(
 9. "Not a valid email string"
10.);
11. }
12. $this->email = $email;
13. }
14.

15. public function getAddress(): string {
16. return $this->email;
17. }
18. }
19.

20. function sendMessage(EmailAddress $email) {
21. // do something
22. }

Sam
ple

phparch.com

 www.phparch.com \ April 2018 \ 15

Testing Strategy With the Help of Static Analysis

1. The type hint is valid, and the class
exists.

2. You’re assigning only objects of this
type to it.

3. You’re calling only methods avail-
able on the type-hinted class.

/**
 * @var Address
 */
private $address;

The same benefits stemming from
type hints are also applicable to func-
tion/method parameters and return
types. There’s always the write part
(what is returned from a method) and
the read part (what the caller does with
the returned value).

Listen to the Types
Types can also give you subtle

feedback about the design of your
application—learn to listen to it. One
such case is inappropriate interfac-
es—when you’re implementing an
interface, and you’re forced to throw
an exception from half of the methods
you have to add to the class, the inter-
face isn’t designed well and will usually
benefit from separating into several
smaller ones. Using such an interface
in production code is dangerous—by
implementing it, you’re promising it’s
safe to pass the object somewhere the
interface is type-hinted but calling its
methods will throw unexpected excep-
tions.

Another type of feedback is making
use of information that’s unknown to
the type system. If the developer knows
and takes advantage of something that
isn’t obvious from looking at the type
hints, like checking a condition in
advance and knowing what a method
will return based on the result. It can
make the tools fail with a false positive:

if ($user->hasAddress()) {
 // getAddress() return typehint
 // is ?Address
 $address = $user->getAddress();

 // potentially dangerous -
 // $address might be null
 echo $address->getStreet();
}

There’s no machine-readable
connection between hasAddress() and
getAddress() in type hints. The knowl-
edge the above code will always work
is available only in developer’s head or
by closely inspecting the source code
of the class. You might object that this
example is too simple, and everyone
understands what’s going on, but there
are much more complex examples like
this in the wild. For example, a Product
object that has every property nullable
because they can be empty while the
Product is being configured in the
content management system, but once
it’s published and available for purchase
on the site, they are guaranteed to be
filled out. Any code that works only
with published products has to make
$value !== null checks in order to
comply with the type system.

A solution to this problem is gener-
ally not to reuse objects for different
use cases. You can represent published
products with a PublishedProduct class
where every getter is non-nullable.

Tools for Finding Type
System Defects (a.K.a.
Bugs)

Because it is interpreted at runtime,
PHP itself does not discover type
system defects in advance because that’s
usually a job of the compiler. A program
in C# or Java will refuse to execute if
there’s a problem like an undefined
variable, calling an unknown meth-
od or passing an argument of a wrong
type somewhere deep in the code. In
PHP, if there’s an error like that in the
third step of the checkout process, the
developer (or the user) will find it when
they execute that line of code during
testing or in production. But thanks to
the latest advancements in the language
itself, like scalar and nullable type hints,
it’s now easier to be sure about types of
many variables and other expressions
just by looking at the code without the
need to execute it.

That’s where static analyzers come
into play. They gather all available infor-
mation about the code—besides native
type hints, they understand common

phpDoc conventions, employ custom
plugins and analyze loops and branches
to infer as many types as possible.

One of these tools is PHPStan1; it’s
open-source and free to use (disclaim-
er: I’m the main developer of PHPStan.)
Other similar tools are Phan2, Exakat3,
and Psalm4.

Besides obvious errors, it can also
point out code that can be simplified
like always false comparisons using
===, !==, instanceof, or isset() on
never defined variables, duplicate keys
in literal arrays, unused constructor
parameters, and much more. Because
running a comprehensive analysis on
an existing codebase for the first time
can result in an overwhelming list of
potential issues, PHPStan supports
gradual checking. Its goal is to enable
developers to start using the tool as
soon as possible and to feel like they’re
leveling up in a video game.

vendor/bin/phpstan analyse src/

If you run the PHPStan executable
without any flags, it will run the basic
level zero by default, checking only
types it’s completely sure about, like
methods called statically and on $this.
It does not even check types passed to
method arguments until level five (only
the number of passed arguments is
checked on lower levels), but it definite-
ly finds a lot of issues in between.

PHPStan is extensible—you can
write custom rules specific to your
codebase and also extensions describ-
ing behavior of magic __call, __get,
and __set methods. You can also write
a so-called “dynamic return type exten-
sion” for describing return types of
functions or methods which vary based
on various conditions like types of
arguments passed to the function or the
type of object the method is called on.
There are already plenty of extensions
available for popular frameworks like
Doctrine, Symfony, or PHPUnit.

1 PHPStan:
https://github.com/phpstan/phpstan
2 Phan: http://github.com/phan/phan
3 Exakat: https://exakat.io
4 Psalm: https://getpsalm.org

Sam
ple

phparch.com
https://github.com/phpstan/phpstan
http://github.com/phan/phan
https://exakat.io
https://getpsalm.org

16 \ April 2018 \ www.phparch.com

Testing Strategy With the Help of Static Analysis

How to Save Time with a
Static Analyzer

We already established there is a lot
of value to gain from the type system.
But how can we use it to save precious
time and resources? When testing a
PHP application, whether manually
or automatically, developers spend a
lot of their time discovering mistakes
that wouldn’t even compile in other
languages, leaving less time for testing
actual business logic. Typically, there’s
duplicate effort because some bugs are
discovered by both static analysis and
by unit tests as in Figure 1.

Since tests must be written by
humans and represent code as any
other, they are very costly—not only
during the initial development but for
maintenance as well. Our goal should
be to make those two sets disjoint, so
we don’t write any test which can be
covered by static analysis. And while
we’re at it, we can try to make the blue
circle as big as possible so the type
system gains more power and is able to
find most bugs on its own.

One could object we’ll save time
by not writing redundant tests, but
that time will get used up by writing
classes, adding type hints, thinking
about interfaces and structuring the
code differently to benefit from the
type system as much as possible. To
counter the objection, I’d argue tests
get written only to prevent bugs, but
solid and strong types have benefits
reaching much further—they improve
readability and provide necessary
communication and documentation
about how the code works. Without
any types, the orientation in the code is

much harder not only for static analyz-
ers but for developers too.

PHP is naturally very benevolent
about the handling of data which usual-
ly goes against safety and predictability.
Many of the tips I’m sharing below are
about cutting down the space of possi-
ble outcomes, resulting in simpler code.

Tips for More Strongly-Typed
Code

1. Don’t Hide Errors
Turn on reporting and logging of all

errors using error_reporting(E_ALL);.
Especially notices (e.g., E_NOTICE),
regardless of their name, are the most
severe errors that can occur—things
like undefined variables or missing
array keys are reported as notices.

2. Enable Strict Types
Use declare(strict_types = 1);

on top of every file. This ensures only
values of compatible types can be
passed to function arguments, basical-
ly that "dogs" does not get cast to 0. I
can’t recommend this mode enough;
its impact can be compared to turning
on notice reporting. The per-file basis
allows for gradual integration—turn it
on in a few selected files and observe
the effects, rinse and repeat until it’s on
in all the files.

3. Encapsulate All Code
All code should be encapsulated in

classes or at least functions. Having
all the variables created in the local
scope helps tremendously with know-
ing their type. For the same reason, you
shouldn’t use global variables. Instead
of procedural scripts stitched together
via include and using variables appear-
ing out of nowhere, everything is neatly
organized and obvious.

4. Avoid Unnecessary Nullables
Avoid nullables where they’re not

necessary. Nullable parameters and
return types complicate things. You
have to write if statements to prevent
manipulating with null. More branch-
es signify there’s more code to test.
Having multiple nullable parameters

in a method usually means only some
nullability combinations are valid.
Consider this example which sets a date
range on an object:

public function setDates(
 \DateTimeImmutable $from,
 \DateTimeImmutable $to);

If a requirement comes that the dates
should also be removable, you might be
tempted to solve it this way:

public function setDates(
 ?\DateTimeImmutable $from,
 ?\DateTimeImmutable $to);

But that means you can call the
method with only a single date, leaving
the object in an inconsistent state.

$object->setDates(
 new \DateTimeImmutable('2017-10-11'),
 null);
$object->setDates(
 null,
 new \DateTimeImmutable('2017-12-07')
);

You can prevent this from happen-
ing by adding an additional check to
the method body, but that bypasses the
type system and relies only on runtime
correctness. Try to distinguish between
different use cases not by making the
parameters nullable but by adding
another method:

public function setDates(
 \DateTimeImmutable $from,
 \DateTimeImmutable $to);
public function removeDates();

5. Avoid associative arrays.
When type-hinting an array, the

code does not communicate that the
developer should pass an array with a
specific structure. And the function
which accepts the array cannot rely on
the array having specific keys and that
the keys are of a certain type. Arrays
are not a good fit for passing values
around if you want maintainability
and a reliable type system. Use objects
which enforce and communicate what
they contain and do. The only excep-
tion where arrays are fine is when they
represent a collection of values of the
same type. This can be communicated
with a phpDoc and is enforceable using
static analysis.

Figure 1. Venn diagram

Sam
ple

phparch.com

 www.phparch.com \ April 2018 \ 17

Testing Strategy With the Help of Static Analysis

/**
 * @param User[] $users
 */
public function setUsers(
 array $users
);

6. Avoid Dynamic Code
Avoid dynamic code like

$this->$propertyName or new

$className(). Also, don’t use reflection
in your business logic. It’s fine if your
framework or library uses reflection
internally to achieve what you’re asking
it to do but stay away from it when writ-
ing ordinary code. Do not step outside
the comforts of the type system into the
dangerous territory of reflection.

7. Avoid Loose Comparisons
Don’t use loose comparisons like ==

or !=. When comparing different types,
PHP will try to guess what you mean
which leads to very unexpected results.
I circled the most surprising ones in
Figure 2. Did you know "0" equals to
false? Or that array() equals to null?

Instead, use strict comparisons like
=== and !==. They require both the
types and the values to match. In case
of objects, === will return true only if it’s
the same instance on both sides. In case
of DateTime objects, where the compar-
ison operators are overloaded by the
language, using == was acceptable.
When PHP 7.1 introduced microsec-
onds, it broke a lot of code. I recommend
comparing DateTime instances by first
calling ->format(), stating the required
precision and then compare the strings
using strict operators.

Avoid Empty Comparisons
A similar case of loose typing is the

empty construct. Here’s a list of values
considered empty:
• "" (an empty string)
• 0 (an integer)
• 0.0 (a float)
• "0"
• null

• false
• an empty array

This makes empty unusable for any

input validation. Instead, work with
specific values and write a specific
comparison of what you’re trying to
achieve. Don’t use empty when asking
about an empty array, use count($ar-
ray) === 0. Don’t use it for detecting
an empty string because it would not
accept "0", write $str !== '' instead.

9. Use only Booleans in conditions
If you look at the table summarizing

loose comparisons, the true and false
columns summarize what happens
when a bare value is put into a condi-
tion, and the result can surprise you.
Again, use explicit comparison against
the value you’re looking for. Tip:
PHPStan’s extension phpstan/phpstan-

strict-rules enforces this and other
rules for strictly-typed code.

What Tests Do We Need?
All the tips above were of local char-

acter—how to improve specific places
in your code to get the most out of the
type system. What I’m about to share
now impacts the architecture of the
whole application and makes opinion-
ated decisions about what has to be
unit-tested and where the static analy-
sis of the type system is sufficient.

First, let’s clarify why I think a unit
test is the most valuable kind of test
and what criteria it needs to meet. Unit
tests focus on testing one small unit,
usually a class or a function. When a
unit test fails, we know exactly which

place needs to get fixed. In contrast,
when an integration or even a UI test
fails, we have no idea where to look. A
third party service could be down, our
database could have changed, or maybe
we just moved some button 10 pixels
to the right and changed its text. Unit
tests shouldn’t have any dependencies
outside of the code. They should not
connect to the database, access the
filesystem and send anything over the
network. Since they focus on testing
just the application code, they tend to
be very fast. Having some integration
tests help, mainly for things that can’t
be tested with unit tests because of their
nature, but unit tests should form the
big and solid base of your test pyramid.

Application code can be divided into
two main types: wiring and business
logic. Wiring is what holds the appli-
cation together; controllers, facades,
passing values along, getters and setters.
Business logic is what justifies the
existence of our application and what
we’re paid to do, such as mathematical
operations, filtering, validation, parsers,
managing state transitions, etc. A stat-
ic analyzer will tell you if you’re calling
an undefined method, but it can’t know
you should have used ceil() instead of
floor() or that you should have written
that if condition the other way around.

So how can one justify the existence
of wiring? In modern applications,
there’s a lot of it, and we’re better for it.
Wiring makes reusability possible. We

Figure 2. Loose comparison table

Sam
ple

phparch.com

18 \ April 2018 \ www.phparch.com

Testing Strategy With the Help of Static Analysis

can extract common pieces of code
and call them from multiple places. It
improves readability by splitting code
into smaller chunks. Thanks to wiring,
our code is more maintainable.

But because of its nature, testing it
can become tedious and boring. Test-
ing setters, getters, and whole classes
whose only purpose is to forward
values to subsequent layers does not
yield a lot of revealed errors and is not
very economical. Once we have type
hints for everything and employ a static
analyzer, it should be enough to verify
the wiring code works as expected.

The role of the entry point to an
application, like a controller, is to sani-
tize all incoming data and pass them
further down the line as well-defined
and validated types. If you allow strong
types to grow through your application,
it becomes much more solid and stati-
cally verifiable as shown in Figure 3.

Unit tests should focus on business
logic. A classic mistake is to interweave
business logic with data querying,
making the job of a unit test much
harder:

function doSomething(int $id): void {
 $foo = $this->someRepository
 ->getById($id);
 // business logic performed on $foo.
 $bars = $this->otherRepository
 ->getAllByFoo($foo);
 // business logic performed on $foo
 // and $bars
}

With this code structure, you don’t
have any other option than to mock in
order to provide the interesting lines you
want to test with some data. Mocking

in a correctly architectured applica-
tion shouldn’t be necessary because
it’s white-box testing and by definition
dependent on the inner structure of the
tested code, therefore more prone to
breaking.

Instead, separate the business logic a
to a different class and design its public
interface to receive all the data it needs
for its job. This class does not need to
perform any database queries or other
side effects. It will receive data from the
real source in production and manually
created data in tests. You can write a lot
of simple unit tests without any mock-
ing and test every edge case since you
saved a lot of time by not testing the
wiring code (Listing 2)!

This is also the reason why I like using
ORMs like Doctrine. They get a bad
reputation because people use them for
the wrong reasons. You shouldn’t look
to an ORM to generate SQL queries for
you because the tool doesn’t know what
you will need in advance, resulting in
poor performance. You shouldn’t use
an ORM so you can switch to a differ-
ent database engine one day. Quite
the opposite—you’re missing out if
you’re not using the advanced features
of your database of choice. The reason
why I like to use an ORM is because it

allows me to represent data as objects—
they can be type-hinted, constructed
by hand for the purpose of unit tests,
and contain methods which guarantee
consistent modifications.

With tests, you can measure code
coverage, a percentage of executed lines
of code during test runs. I propose
a similar metric for static analysis. If
having more type hints means we can
rely on the code more, there should be a
number associated with that. I propose
the term “type coverage” to signify how
many variables and other expressions
result in mixed and which have a more
specific type.

Closing Words
Static analyser should be in the tool

belt of every PHP programmer. Simi-
larly to a package manager and unit
testing framework, it’s an indispensable
tool for making quality applications. It
should run besides tests on a contin-
uous integration server because its
function is similar - to prevent bugs.
Once we get used to the feedback from
the type system, we can concentrate our
testing efforts in places where the static
analyzer can’t know how the right code
should look. In the rest of the applica-
tion, it has us covered.

 Ondřej works as the CTO at Slevomat.cz, moving between
product and software development. He enjoys quality assur-
ance and frequent deployment of innovations for the end users.
He shares his experience at conferences across Europe, offers
his expertise as a consultant, and organizes trainings. He also
created PHPStan, a popular static analyzer that focuses on
finding bugs in code without running it. @OndrejMirtes

Listing 2

 1. class Calculator
 2. {
 3. /**
 4. * @param Foo $foo
 5. * @param Bar[] $bars
 6. */
 7. public function calculate(Foo $foo,
 8. array $bars): CalculatorResult {
 9. // ...
10. }
11. }

Figure 3. Grow

Sam
ple

phparch.com
http://twitter.com/OndrejMirtes

a php[architect] guide

Discover how to secure your
applications against many of the
vulnerabilities exploited by attackers.

Security is an ongoing process not something to add
right before your app launches. In this book, you’ll
learn how to write secure PHP applications from first
principles. Why wait until your site is attacked or your
data is breached? Prevent your exposure by being aware
of the ways a malicious user might hijack your web site or
API.

Security Principles for PHP Applications is a comprehensive guide.
This book contains examples of vulnerable code side-by-side with
solutions to harden it. Organized around the 2017 OWASP Top Ten
list, topics cover include:

• Injection Attacks
• Authentication and Session Management
• Sensitive Data Exposure
• Access Control and Password Handling
• PHP Security Settings
• Cross-Site Scripting
• Logging and Monitoring
• API Protection
• Cross-Site Request Forgery
• ...and more.

Written by PHP professional Eric Mann, this book builds on his
experience in building secure, web applications with PHP.

Order Your Copy
http://phpa.me/security-principles

Sam
ple

http://phpa.me/security-principles

Sam
ple

http://phpa.me/mag_subscribe

	Table of Contents
	PHPUnit Worst Practices
	Victor Bolshov

	Easier Mocking with Mockery, Part 1
	Robert Basic

	Testing Strategy With the Help of Static Analysis
	Ondrej Mirtes

	Evolved PHP
	Chris Pitt

	Testing in Practice
	Oscar Merida

	Authentication with Laravel
	Joe Ferguson

	Ongoing Education
	Chris Tankersley

	PHP Isolation in Production
	Eric Mann

	Build an API, Part One
	Edward Barnard

	March Happenings
	What’s the Fuss About Serverless?
	James Titcumb

	On the Creativity of Programmers
	Eli White

