
www.phparch.com

Command and Control

The Dev Lead Trenches:
What Not To Do

Community Corner:
Beyond PHP

Security Corner:
Composing Application
Security

Education Station:
Build an API, Part Three

The Workshop:
CakePHP—Part One

finally{}:
Open Source &
Commercial Entities

ALSO INSIDE

Domain-Driven Architecture
With Commands and Events

Pro Parsing Techniques With
PHP, Part One: Simplifying
Your Parsing Strategy

Self-Host Your Team’s Git
With Gitolite

Design Is for Designers

June 2018
Volume 17 - Issue 6

PHP Application Hosting

mailto:careers@nexcess.net

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Subscriptions
Print, digital, and corporate subscriptions are available. Visit
https://www.phparch.com/magazine to subscribe or email
contact@phparch.com for more information.

Advertising
To learn about advertising and receive the full prospectus,
contact us at ads@phparch.com today!

Managing Partners
Oscar Merida, Sandy Smith

php[architect] is published twelve times a year by:
musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2018—musketeers.me, LLC
All Rights Reserved

June 2018
Volume 17 - Issue 6

2 Editorial:
Command and Control
Oscar Merida

24 The Dev Lead Trenches:
What Not To Do
Chris Tankersley

28 Security Corner:
Composing Application Security
Eric Mann

30 The Workshop:
CakePHP, Part One
Joe Ferguson

37 May Happenings

38 Community Corner:
Beyond PHP
James Titcumb

40 Education Station:
Build an API, Part Three
Edward Barnard

44 finally{}:
Open Source & Commercial
Entities

Features
3 Domain-Driven Architecture With

Commands and Events
Barney Hanlon

10 Pro Parsing Techniques With PHP,
Part One: Simplifying Your Parsing
Strategy
Michael Schrenk

14 Self-Host Your Team’s Git With
Gitolite
Gabriel Zerbib

20 Design Is for Designers
Steve Bennett

Columns

Sam
ple

mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me

14 \ June 2018 \ www.phparch.com

FEATURE

Self-Host Your Team’s Git
With Gitolite

Gabriel Zerbib

If you wish to set up a private Git server for your personal, work, or
team projects, but favor free software and simple architecture, or
don’t want a service hosted by a third party, then Gitolite is the
solution for you.

Designed in 2005 by Linus Torvalds
for the needs of the Linux Kernel devel-
opment team, the Git source code
management system has become wide-
ly accepted outside the community. For
more info check out A Short History of
Git1. Free, fast, distributed, feature-rich,
and yet simple to use, it has become
almost indispensable today for stor-
ing, comparing, and collaborating on
all types of programming projects, and
even for other kinds of documents.

Options for a Private Git Repo
Although Git can be used primarily

locally, its power comes from its facul-
ties of collaborative and distributed
work. A repository server is therefore
central to any development project with
Git as a versioning system. There are
several SaaS offerings, among which is
the famous GitHub, for hosting public
or private Git repositories. In gener-
al, they provide services which go far
beyond the versioning of the code: they
range from project planning to ticket
tracking, discussion forums, and even
CDN for the distribution of binaries.

But some organizations prefer to
move towards solutions where they
retain complete control over infor-
mation ownership, network topology,
and administration. Free solutions2 are
not lacking to self-host a Git reposito-
ry service similar to GitHub. Among
the most popular tools we can list
the GitLab project in Ruby, GitPrep

1 A Short History of Git:
https://phpa.me/short-history-git
2 Free solutions:
https://alternativeto.net/software/github/

developed in Perl, or Gogs in the Go
language. Companies offer SaaS pack-
ages based on this software, but the real
asset of these projects is they are free
and installable on private servers.

Nevertheless, an organization
that already has its tools for bugs
management, project planning, and
collaborative documentation may wish
to simply equip itself with an internal
Git server that only fulfills this func-
tion. We will present in this article the
Gitolite software, which exists solely to
host and control one’s Git repositories
on premise.

Gitolite
Gitolite3, proposed by Sitaram

Chamarty, is a collection of Perl scripts,
wisely arranged to allow easy manage-
ment of Git repositories served over the
SSH protocol.

The tool is designed to solve one
problem, and it solves it well.

Anatomy of a Git Server
Roughly, a Git repository is nothing

more than a .git directory containing
files in a particular format, which repre-
sent the entire history of changes, in all
the branches. The working copy of the
repository is simply a view on a given
commit hash, which materializes the
reconstruction of each source file as the
incremental resultant of all the changes
up to this level of commit. A bare clone
is a clone without a materialized work-
ing copy.

3 Gitolite:
https://github.com/sitaramc/gitolite

By its distributed nature, when one
makes a git clone of a repository, its
entire history is fetched. Thus, each
clone is itself an integral repository,
and there is an equivalence of roles
between the two, hence the choice of
the term clone. A more in-depth study
of Git’s guts will bring some nuance to
the above assertion, as there are more
subtleties such as the configuration,
reflogs, and hooks, but at first glance,
we can keep this model.

Permissions support, pull requests
management, tickets system, and
other Wiki, although highly integrated
with the GitHub platform, are satellite
services outside the Git repository itself.
Free products such as GitLab, which
also include these modules, are there-
fore generally based on at least an
HTTP server, a database engine, or a
queue manager. The approach chosen
by Gitolite is to offer control of an SSH
key-based authentication layer, on top
of the file system where the Git repos-
itories are stored. The authentication is
thus natively ensured by SSH, and the
permissions are managed by Gitolite at
repository level: the users are not Linux
accounts on the server, but virtual users
materialized by their public key, as we
will see below.

So there is no web-based editor, no
pull request tracking, or discussion
thread on a commit; but there is also no
database or application server! Repos-
itories are simple folders on the server,
and SSH transports the client Git proto-
col; it’s simple, secure, and lightweight.

Sam
ple

phparch.com
https://phpa.me/short-history-git
https://alternativeto.net/software/github/
https://github.com/sitaramc/gitolite

 www.phparch.com \ June 2018 \ 15

Self-Host Your Team’s Git With Gitolite

Install
At the time of writing this article, the version of Gitolite is

3.6.7. We start from a Debian Jessie or Stretch, whose host-
name we assume is gitserver.

Note: You may also try the installation on a Docker
container. You should use the corbinu/ssh-server image
because Gitolite is essentially based on an SSH server,
which in itself requires quite some work to assemble in
Docker. Alternately, the jgiannuzzi/gitolite image is
ready with Gitolite installed, and you could jump to the
Configuration section.

Preparing the Admin Workstation
Gitolite only allows key authentication, excluding any pass-

word.
To manage the server, you must have a pair of administra-

tion keys. On your station, generate it if necessary with:

laptop $ ssh-keygen

Then upload the public key to the server at a temporary
location we will use later:

laptop $ scp ~/.ssh/id_rsa.pub gitserver:/tmp/admin.pub
laptop $ ssh gitserver chmod 444 /tmp/admin.pub

Store the private key carefully, as it is required to perform
any administrative tasks on Gitolite, such as managing the
repositories, or the user accounts. However, even if you lose
it, there is a workaround explained below.

Setting Up the Server
Let’s connect to the server. The installation of packages

is to be executed as root (or with sudo). Let’s create the git
technical user in a non-interactive way, without any identity
information thanks to the --gecos "" option, and with the
password login method disabled.

gitserver# apt-get update
gitserver# apt-get install -y git-core
gitserver# adduser --disabled-password --gecos "" git

The Git repositories will be stored in the Home folder of the
git user (which defaults to /home/git). Note that if you want
the files of this technical user (and therefore all the reposito-
ries) to be hosted elsewhere, you can specify the --home DIR
option to the adduser command.

Then, continuing on the server, we take the identity of git
for the preparation of the Gitolite service.

gitserver# su git
gitserver$
gitserver$ cd ~
gitserver$ mkdir bin
gitserver$ echo "export PATH=$HOME/bin/:$PATH" >> .bashrc
gitserver$ git clone https://github.com/sitaramc/gitolite
gitserver$ gitolite/install -to $HOME/bin/
gitserver$ bin/gitolite setup -pk /tmp/admin.pub

The gitolite/install script prepares the executables
(which are actually Perl scripts) for managing the repositories.
Once in place, the bin/gitolite setup script prepares the file
structure your meta-repository will use.

You get an output which looks like this:

Initialized empty Git repository in /home/git
/repositories/gitolite-admin.git/
Initialized empty Git repository in /home/git
/repositories/testing.git/
WARNING: /home/git/.ssh missing; creating a new one
 (this is normal on a brand new install)
WARNING: /home/git/.ssh/authorized_keys missing;
creating a new one
 (this is normal on a brand new install)

This is entirely normal, as indicated in the warning.
The installation script prepared two repositories: gito-

lite-admin and testing. The latter will give us the opportunity
to validate our setup, which we do in the next section. The
former is Gitolite’s meta-repository through which the tool
exposes its administration capabilities, as explained below.

Your file structure under /home/git (or any particular home
folder you chose for this account) should now contain the
following elements:

gitserver # ls -la /home/git

drwxr-xr-x 7 git git 4096 Jan 7 08:19 .
drwxr-xr-x 3 root root 4096 Jan 7 08:16 ..
drwx------ 2 git git 4096 Jan 7 08:19 .ssh
drwxr-xr-x 7 git git 4096 Jan 7 08:19 bin
drwxr-xr-x 6 git git 4096 Jan 7 08:19 gitolite
drwx------ 4 git git 4096 Jan 7 08:19 repositories

Verification
That’s all! At this stage, your gitserver machine is already

able to serve the testing repository shipped with the installer.
Let’s go back to the workstation.

laptop $ git clone git@gitserver:testing
Cloning into 'testing'...
warning: You appear to have cloned an empty repository.
Checking connectivity... done.

The workstation contacted successfully the gitserver server
over SSH by means of your private key. The testing reposito-
ry is empty but its successful cloning is enough to validate the
efforts above.

Sam
ple

phparch.com

16 \ June 2018 \ www.phparch.com

Self-Host Your Team’s Git With Gitolite

Configuration
Once the server is up and running, it is entirely managed

through the special repository gitolite-admin, which is
owned by the administrator. That is to say, the user who owns
the private key coresponding to the admin public key, as
detailed earlier, is solely entitled to push changes into it. In
this repository, the master branch is the one to which Gitolite
relates to establish the currently active configuration, at any
time.

The gitolite-admin Repository
Before we can create new repositories or declare users, we

need to clone gitolite-admin on the workstation.

laptop $ git clone git@gitserver:gitolite-admin
Cloning into 'gitolite-admin'...
remote: Counting objects: 6, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (6/6), done.
Checking connectivity... done.

laptop $ cd gitolite-admin
laptop $ tree
.
|-- conf
| `-- gitolite.conf
`-- keydir
 `-- admin.pub

Listed in the gitolite.conf file are all the repositories of the
Gitolite instance and their permissions.

The keydir folder contains the public keys of all the virtual
users. We will look at its structure later.

Because gitolite-admin is in itself a cloned repository, any
modification must be git push-ed back to the server (preced-
ed by the appropriate git add and git commit commands) to
update the effective configuration.

Repository Management
To add a repository, you simply need to declare a new

section in the conf/gitolite.conf file in your clone of gito-
lite-admin, according to this format:

repo my-project
 RW+ = gabriel
 R = alice

When you push, the Gitolite scripts automatically create the
repository on the server.

To remove a repository, it is not sufficient to erase its decla-
ration from this file, as this would simply make the repository
unreachable from remote, but the corresponding folder in
home/git/repositories would remain. You must then connect
to your server with SSH and delete the folder manually:

gitserver $ sudo rm -rf /home/git/repositories/mon-depot

The configuration file follows a simple yet rich gram-
mar [4], which allows for creating groups of users, granting

permissions on specific branches using regular expressions,
and fragmenting complex configurations into separate
include files. For more, see the [Gitolite configuration docu-
mentation] (http://gitolite.com/gitolite/conf/)

@devteam1 = gabriel chris bob
@devteam2 = alice bob john

 repo my-project
 RW+ = @devteam1
 R = jim
 RW develop = jim

 include "more-repos.conf"

User Management
A Gitolite user is an identifier declared in gitolite.conf as

explained above. Authentication relies on the pair of keys of
each user: the public keys must be stored (commit, push!) in
the keydir folder of the gitolite-admin repository. At a mini-
mum, you will find there the admin.pub key supplied during
the install. The files must have a .pub extension and the file
names correspond to the username for the Git repositories.

laptop $ cd gitolite-admin
laptop $ tree
.
|-- conf
| `-- gitolite.conf
`-- keydir
 |-- admin.pub
 |-- alice.pub
 |-- laptop
 | |-- admin.pub
 | `-- gabriel.pub
 |-- desktop1
 | `-- gabriel.pub
 `-- office
 `-- bob.pub

Gitolite accepts more than one public key for the same user,
to allow for connecting from several machines.

Since a user corresponds to the name of a public key file, all
the public keys of a given user must have the same file name
below keydir. Fortunately, Gitolite lets you use any subfolder
structure that may help you organize your keys. In the exam-
ple above, we created one folder per host, in which different
keys might have the same name. This choice does not prevent
you from keeping key files at the top level of keydir. Upon
incoming connection, Gitolite tries to resolve the username
according to the SSH private key, by running through the
keydir folder recursively until it finds a matching public key.

However, when connecting to the Git server with the git
command, it is always required to use the Git SSH user:

git clone git@gitserver:my-project

The private key the underlying SSH protocol uses is indeed
that of the user running the command. It is the one which
Gitolite matches in order to determine the applicative account.

Sam
ple

phparch.com

 www.phparch.com \ June 2018 \ 17

Self-Host Your Team’s Git With Gitolite

This mechanism is handled by the Gitolite Perl scripts
which are activated when connecting to SSH via Git. This is
an example of what we can find on the server in /home/git/.
ssh/authorized-keys:

gitolite start
command="/home/git/bin/gitolite-shell admin",
no-port-forwarding, no-X11-forwarding,
no-agent-forwarding,no-pty ssh-rsa
AAAAB3NzaC1yc2EAA...MZyWKMT23X2wHbQp gabriel@laptop

command="/home/git/bin/gitolite-shell alice",
no-port-forwarding,no-X11-forwarding,
no-agent-forwarding,no-pty ssh-rsa
AAAbQ247rCFkwWx87...5CgtALOUCCIpeQ5d alice@desktop
command="/home/git/bin/gitolite-shell gabriel",
no-port-forwarding,no-X11-forwarding,
no-agent-forwarding,no-pty ssh-rsa
AAGDFGDFbo987BD...VJDF8G8BUCChvi45 gabriel@win10home
...
gitolite end

The user git is, therefore, the one through which every-
thing happens, thanks to SSH. Gitolite performs its tasks
thanks to its own limited, custom shell. The authorized_keys
file of use git is maintained by Gitolite automatically every
time a push occurs in the gitolite-admin repository, as per the
new updates in the keydir folder.

Backups
A Git repository contains its full history, so theoretically it

should be enough to archive the repository’s folder. However,
a simple cron with:

tar czf my-project.tar.gz \
 /home/git/repositories/my-project

would be somewhat dangerous, and might lead to corrupt-
ed data. In practice, if the Git server is active (push) during
the tar operation, the special files which represent the reposi-
tory’s history would be captured in an inconsistent state.

One solution could consist of temporarily stopping the
SSH service on the Gitolite machine, just long enough to
perform the tar command, to guarantee that no remote user
is modifying the repository’s state during the archiving. But
this is not optimal and would lead to a poor user experience,
especially if you manage many repositories and schedule a lot
of backups.

A better approach would be to make a local clone of the
repository on the server from the local path of the origin
folder and then to archive this copy.

git clone --mirror my-project /tmp/my-project
tar czf my-project.tar.gz /tmp/my-project

The --mirror clone is also a bare one, which means that it
does not ship a working copy. The replica has some differ-
ences with the original (in particular the hooks are lost, as
mentioned above) but if the backup is mainly aiming at
putting aside the source files and their history in a safe place;

this method is the preferred one. The hooks are script files
located directly in the /home/git/repositories/mon-depot/
hooks folder on the Gitolite server: it is safe to archive them
as regular files. Besides, an administrator should maintain
them as source files on their own, with their dedicated Git
repository (with scheduled backups).

Troubleshooting
Let’s address some of the most frequent situations.

The Locale
If you notice all the Gcommands that you issue to your

server respond with this warning:

laptop $ git fetch
perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings
 are supported and installed on your system.

 LANGUAGE = (unset),
 LC_ALL = (unset),
 LC_PAPER = "fr_FR.UTF-8",
 LC_ADDRESS = "fr_FR.UTF-8",
 LC_MONETARY = "fr_FR.UTF-8",
 LC_NUMERIC = "fr_FR.UTF-8",
 LC_TELEPHONE = "fr_FR.UTF-8",
 LC_IDENTIFICATION = "fr_FR.UTF-8",
 LC_MEASUREMENT = "fr_FR.UTF-8",
 LC_TIME = "en_US.UTF-8",
 LC_NAME = "fr_FR.UTF-8",
 LANG = "en_US.UTF-8"

perl: warning: Falling back to the standard locale ("C").

Then you just need to configure the Locale environment
parameters on gitserver. As root, add the following lines to
file /etc/environment (or create it if needed).

LANGUAGE=en_US.UTF-8
LANG=en_US.UTF-8
LC_ALL=en_US.UTF-8

And then, still as root, execute:

locale-gen en_US.UTF-8

Locked Out?
If you ever lose your admin private key, don’t panic. Every-

thing remains possible without it (as long as you’re able to
connect to the server with SSH, of course).

All you have to do is log in to the server’s shell, clone local-
ly the administrative meta-repository, and declare there your
new admin key.

So, first, let’s generate a new key on the working station,
and upload it to the server.

laptop$ ssh-keygen -f ~/.ssh/new-admin
laptop$ scp ~/.ssh/new-admin.pub gitserver:/tmp/

Sam
ple

phparch.com

18 \ June 2018 \ www.phparch.com

Self-Host Your Team’s Git With Gitolite

Now, on the server:

gitserver# git clone /home/git/repositories/gitolite-admin.git
gitserver# mv /tmp/new-admin.pub keydir/admin.pub
gitserver# git add keydir/admin.pub
gitserver# git commit -m "Not wise to lose the admin key"
gitserver# gitolite push

Notice the final Gitolite push command instead of a regu-
lar Git push! In effect, the Gitolite executable, on the server,
allows bypassing the checks (hooks) during the push, which
is necessary when the remote is, in fact, a local file-system
path.

This operation leads to updating the authorized_keys file of
the real git user, and you become able to get remote control
over gitolite-admin.

Many Remotes, Many Keys
This problem is not directly related to Gitolite, but since it is

very common, it is worth mentioning in this article. How can
you instruct Git that it should use one particular key of yours
among your very heavy keyring, when it comes to connecting
to Git server?

As a matter of fact, with no particular indication, the
following command:

git clone git@gitserver:my-project

will use your default private key (generally the file ~/.ssh/
id_rsa).

There are several problems here; what if the Gitolite key for
my virtual user is a different file? What if I need to act as two
different virtual users from the same workstation and same
system account? Finally, how do I simplify the command and
avoid writing the « git@ » part every time?

The solution resides in the configuration file ~/.ssh/config
on the workstation. By adding a section for our Git server,
we can instruct the underlying SSH program that any git
command uses, as to which key it should associate automat-
ically:

Host gitserver
 Hostname gitolite.domain.tld
 User git
 IdentityFile ~/.ssh/gitolite_gabriel_id_rsa
 IdentitiesOnly yes

This snippet specifies the fully qualified hostname of our
Git server nickname (if needed), and which remote username
should be used by default for any SSH connection (so as to
avoid typing « git@ »), and the private key to communicate.

Moreover, if we add the following snippet:

Host git-admin
 Hostname gitolite.domain.tld
 User git
 IdentityFile ~/.ssh/gitolite_admin_id_rsa
 IdentitiesOnly yes

you give yourself a convenient shortcut for your

administrative tasks. All you have to do, is to relate to the
gitserver by is new nickname git-admin:

git clone git-admin:gitolite-admin

It will know you want to connect with your admin user and
key there.

Notice that this trick can be used with GitHub as well, if
you need to work on many repositories with a unique Deploy
Key4 for each one.

Hooks
Git hooks5 are events that the versioning system triggers

upon various situations, in particular when you commit your
changes.

Local Hooks
Git lets us write our own event hook handlers, in the shape

of executable scripts that we put into the .git/hooks directo-
ry under any repository. Each hook has a fixed, pre-defined
name, and if we want to activate a script every time a commit
occurs, to perform some checks and accept or reject the
commit, all we have to do is write an executable by the name
pre-commit inside the hooks folder.

However, git commit is a local operation; your computer
does not communicate with the origin repository yet. The
pre-commit hook is a local script you can share with your
friends but it does not belong to the repository—and you
definitely won’t persist it in the remote bank.

It is easy to install (locally) a suite of pre-commit checks for
PHP projects, in order to validate the syntax, the respect of
standards or to execute automatically the unit tests for exam-
ple. You may find the bruli/php-git-hooks6 package useful for
that purpose. The local suite will do its job whether you use
Gitolite or GitHub, because it only runs on your computer,
without the server being aware of it.

Server-Side Hooks
There is another domain of events, which are triggered on

the server upon network activity. The main usage is to decide
whether to accept or reject a git push. The corresponding
hook is called update.

In Gitolite we can configure arbitrary scripts to be wired to
this hook, at the repository level, in the following steps.
1. Create a directory called server-hooks under /home/git.
2. Edit the /home/git/.gitolite.rc file, and just inside the

%RC section, add the following directive.

%RC = (
 ...
 LOCAL_CODE => "$ENV{HOME}/server-hooks",
);

4 Deploy Key: https://phpa.me/github-deploy-keys
5 Git hooks: https://phpa.me/git-hooks
6 bruli/php-git-hooks: https://github.com/bruli/php-git-hooks

Sam
ple

phparch.com
https://phpa.me/github-deploy-keys
https://phpa.me/git-hooks
http://php.ug

 www.phparch.com \ June 2018 \ 19

Self-Host Your Team’s Git With Gitolite

3. Put your scripts in the server-hooks folder, with any name
that suit your needs.

4. Then, in gitolite-admin, configure your various reposito-
ries in gitolite.conf by adding the chain of scripts you
want to run at every single push command:

repo my-project
 RW+ = user1 user2
 ...
 - VREF/check-code-quality = @all
 - VREF/run-phpunit = @all
 ...

The above snippet declares the execution of the
check-code-quality script, followed by the run-phpunit script
in this order.

Each script, by the same name, must be an executable file
under your server-hooks folder. They act as filters: the system
calls them with the base hash and target hash as the second
and third argument—and they may return a non-zero exit
code to reject the push altogether.

Gitolite lets you conveniently organize your scripts atomi-
cally, and attach the relevant ones to the repositories of your
choice, possibly in a different sequence for each.

In the following example, we’ll see an example of a
check-code-quality Bash script you could install to have
Gitolite check the PHP files impacted by a pThe next listing
is an example of a check-code-quality Bash script you could
install to have Gitolite check the PHP files impacted by a Push
operation.

Let’s see in Listing 1 an example of a check-code-quality
Bash script that you could install to have Gitolite check the
PHP files impacted by a Push operation.

Conclusion
We only saw an overview of the capabilities of the tool,

which offers very rich options in particular in the area of
the permissions and rules at the refs level (conditions on the
number of files in a push, control and authorization on specif-
ic files, working hours and more).

Besides, the program is extensible via a collection of
“non-core” scripts you can activate, (for specific needs such as
the support for HTTP, LDAP, replicas for high availability, or
the integration with external ticket systems), which make the
solution extremely flexible without compromising on securi-
ty or privacy.

Gabriel has been enjoying crafting
software for almost three decades, during
which he learned that most technologies are
pleasurable, the moment you understand
which particular problem it comes to solve.
Father of three, lecturer, Gabriel is currently
employed at Wix.com and is always happy
to share knowledge and experience. @zzgab

Listing 1

 1. #!/usr/bin/env bash
 2. BASE_HASH=${2}
 3. PUSH_HASH=${3}
 4.
 5. # Build the list of all the files that are in the scope
 6. # of the tentative Push:
 7. # - retain only the added/modified
 8. # - consider only the files with a .php extension
 9.
10. TARGET_FILES=$(git diff --name-status ${BASE_HASH}..${PUSH_HASH} \
11. | grep '̂ [ACM]' \
12. | awk '{print $2}' \
13. | sed -e '/\.php$/ ! d')
14.
15.
16. check_one_file() {
17. local FILENAME=${1}
18.
19. # Perform here all the verifications on the changed file
20. # (here we'll only run the Lint check)
21. php -l ${FILENAME}
22. }
23.
24. # From the server's point of view, the pushed files
25. # are in a temporary object, whose hash we know,
26. # and we need to materialize them in the file system
27. # before we can run analysis tools.
28. extract_and_check_file() {
29. local HASH=${1}
30. local FILENAME=${2}
31. local TMPHASHDIR=/tmp/${HASH}
32. local TMPFILE=${TMPHASHDIR}/${FILENAME}
33. local check_result
34.
35. # Create a temporary folder for this specific push
36. mkdir -p ${TMPHASHDIR}
37. # Make Git extract the contents of the pushed file
38. > ${TMPFILE} git show ${HASH}:${FILENAME}
39. check_one_file ${TMPFILE}
40. check_result=$?
41.
42. rm -f ${TMPFILE}
43. rmdir ${TMPHASHDIR}
44. return check_result
45. }
46.
47. # Loop over all the files in the changeset,
48. # run our custom checks on each, exit with an
49. # error status (reject the Push) at first probem.
50. for f in ${TARGET_FILES}; do
51. extract_and_check_file ${PUSH_HASH} ${f}
52. is_failed=$?
53. is_failed && exit is_failed
54. done
55.
56. # No error, filter has passed
57. exit 0

Sam
ple

phparch.com
https://twitter.com/zzgab

Sam
ple

http://phpa.me/mag_subscribe
http://phpa.me/mag/subscribe

	Table of Contents
	Domain-Driven Architecture With Commands and Events
	Barney Hanlon

	Pro Parsing Techniques With PHP, Part One: Simplifying Your Parsing Strategy
	Michael Schrenk

	Self-Host Your Team’s Git With Gitolite
	Gabriel Zerbib

	Design Is for Designers
	Steve Bennett

	Command and Control
	Oscar Merida

	What Not To Do
	Chris Tankersley

	Composing Application Security
	Eric Mann

	CakePHP—Part One
	Joe Ferguson

	May Happenings
	Beyond PHP
	James Titcumb

	Build an API, Part Three
	Edward Barnard

	Open Source & Commercial Entities

