
www.phparch.com

Navigating State

The Dev Lead Trenches:
Issue Workflows for Teams

Community Corner:
Contributing is More Than
Coding

Security Corner:
Secure Remote Password
Authentication

Education Station:
Build an Algorithm

The Workshop:
CakePHP, Part Two

finally{}:
Do We Need Developers?

ALSO INSIDE

State in the Stateless World

Making Use of Our Robot
Overlords

Pro Parsing Techniques
with PHP, Part Two: Fault
Tolerance

MySQL Without The SQL
—Oh My!

July 2018
Volume 17 - Issue 7

omerida
Rubber Stamp

PHP Application Hosting

mailto:careers@nexcess.net

world.phparch.com

November 14–15, 2018
Washington, D.C.

Call for

Speakers is

Open til 7/22

Submit Today!

2018

A conference designed to bring together all
communities linked by the PHP programming

language.

http://world.phparch.com
http://world.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Managing Partners
Oscar Merida, Sandy Smith

php[architect] is published twelve times a
year by: musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Subscriptions
Print, digital, and corporate
subscriptions are available. Visit
https://www.phparch.com/magazine to
subscribe or email contact@phparch.com for
more information.

Advertising
To learn about advertising and receive
the full prospectus, contact us at
ads@phparch.com today!

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2018—musketeers.me, LLC
All Rights Reserved

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

July 2018
Volume 17 - Issue 7

2 Editorial:
Navigating State
Oscar Merida

20 Community Corner:
Contributing is More Than
Coding
James Titcumb

22 The Dev Lead Trenches:
Issue Workflows for Teams
Chris Tankersley

26 June Happenings

28 Security Corner:
Secure Remote Password
Authentication
Eric Mann

34 Education Station:
Build an Algorithm
Edward Barnard

38 The Workshop:
CakePHP, Part Two
Joe Ferguson

44 finally{}:
Do We Need Developers?
Eli White

Features
3 State in the Stateless World

Luka Mužinić

8 Making Use of Our Robot
Overlords
Brian Thompson

13 Pro Parsing Techniques
with PHP, Part Two: Fault
Tolerance
Michael Schrenk

18 MySQL Without The SQL—
Oh My!
Dave Stokes

Columns

Sam
ple

musketeers.me
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me

18 \ July 2018 \ www.phparch.com

FEATURE

MySQL Without The SQL—Oh My!
Dave Stokes

Or How to Stop Embedding Ugly Strings of SQL In Your Beautiful Code

Do you work on projects where you begin coding before knowing what your data looks
like? Or are you part of the vast majority of developers who have had little or no training
in database theory, relational calculus, Structured Query Language, or sets? Could you be
working on a project without a database administrator to set up relational tables, indexes,
and schemas? Or are you tired of embedding ugly lines of SQL in your pristine PHP code?
There is new hope for you.

1 JSON data type:
https://phpa.me/mysql8-json
2 X DevAPI:
https://phpa.me/mysql-xdev-user-guide
3 XDevAPI PECl extension: https://pecl.php.net/package/mysql_xdevapi
4 installation instructions: https://phpa.me/php-mysql-xdevapi

The MySQL Document Store
MySQL 5.7 introduced a native JSON

data type1 in version 5.7, and it has
been greatly enhanced with version
8. Built on top of the JSON data type
is the MySQL Document Store which
is a NoSQL JSON document store. It
enables you to use a schema-less, flex-
ible storage system. You do not need to
define the attributes of the data, setup
relations, or normalize data. Just create
a collection and populate with data.

You can use the new MySQL Shell to
login to a server and create a collection.
In the example in Output 1, I used the
MySQL Shell to connect to the schema
demo, create a new collection, and a
record. And yes, you can do this in PHP
too!

The MySQL Document Store is built
on a new protocol with a new API—the
X DevAPI2. The old MySQL protocol
was beginning to show its age after over
two decades of use. The new protocol
listens on port 33060 as opposed to the
traditional MySQL 3306 port. There are
several interesting features of the proto-
col so it can better handle asynchronous
queries, management of high availabil-
ity server clusters, and even make sure
instances are ready for upgrade. But
for this article we will only look at the

functionality of the document store.

What is a Document?
A document is a set of keys and value

pairs in a JSON object. The values
of the fields can contain other docu-
ments, arrays, and lists of documents.
The MySQL JSON data type provides
roughly a gigabyte of space in a column
of a row in a table.

Remember that collection created
earlier? If we use SQL to look at the
data from the JSON column you will
see something like Output 2.

Ignore the _id data for a few moments.
The key/value data entered earlier for
name/architect are easy to spot.

Collections are a container made
up of documents. And you can also
access relational tables with the MySQL
Document Store too but ignore that for
now. You can perform CRUD (create,
read, update, and delete operations) on
collections or documents. The API and
the new protocol ensure the calls to the
database look pretty much the same
regardless of whether you are coding in
C++, Java, Node.JS, JavaScript, .NET, or
even PHP.

The X DevAPI PECL Extension
The XDevAPI PECl extension3 is

available online and the documentation
and installation instructions4.

Output 1

MySQL JS> \connect root@localhost/demo Creating a session to
'root@localhost/demo'
Enter password: ******
Fetching schema names for autocompletion... Press ^C to stop.
Your MySQL connection id is 9 (X protocol) Server version: 8.0.11
MySQL Community Server - GPL Default schema `demo` accessible
through db.
MySQL [localhost+ ssl/demo] JS> db.createCollection('architect')
 <Collection:architect>
MySQL [localhost+ ssl/demo] JS> db.architect.add(
 {
 'name' : 'PHP Architect'
 }
)
Query OK, 1 item affected (0.1040 sec)
MySQL [localhost+ ssl/demo] JS>

Sam
ple

phparch.com
https://phpa.me/mysql8-json
https://phpa.me/mysql-xdev-user-guide
https://pecl.php.net/package/mysql_xdevapi
https://phpa.me/php-mysql-xdevapi

 www.phparch.com \ July 2018 \ 19

MySQL Without The SQL—Oh My!

Example
The example in Listing 1 will look

familiar to those who use MySQL or
any other relational database. First, you
need to authenticate into the server.
Next, you select your schema (or data-
base) and then the document collection
to use. From there we are looking to
find a record where the _id field match-
es a particular value.

The next item is the big change. With
traditional MySQL, your query would
look something like:

SELECT * FROM countryinfo
 WHERE _id = "USA";

If we only wanted the JSON docu-
ment, it would really look like:

SELECT doc FROM countryinfo
 WHERE _id = "USA":

With the document store, the query
becomes:

$collection->find('_id = "USA"')
 ->execute();

That has a much cleaner appearance
than the corresponding embedded SQL
string in our beautiful, pristine PHP
code.

Finding Find()
The find function has several param-

eters that can be passed to it. Besides
the search condition (_id = "USA") in
the previous example, you can specify
which fields you desire, how to group
by, a having search condition, sorting
options, limits and offsets, parameter
binding to variables, and locking on
records (exclusive or shared).

The other CRUD functions—add,
find, modify, and remove as they are
called in the MySQL Document Store—
are equally festooned with options. You
get a very rich environment to manage
your data.

Did I mention you can also use the
MySQL Document Store with good
ol’ relational tables? There are slightly
different CRUD functions for relational
tables that map pretty well to their stan-
dard SQL counterparts—insert, select,

update, and delete—with the main
difference being the select function also
has an order by optional parameter.

Behind the Scenes
Underneath the cover, a collection

from the SQL side is a table with two
columns. The first is creatively called
doc for the JSON document and the
second is _id. InnoDB storage engine

tables are much happier with a prima-
ry key, and you can supply your own
value for the _id field or let the server
generate it for you. Since InnoDB is
transactional and locks at the row level,
you can access the same data via SQL
or the document store at the same time,
perform transactions, replicate data,
and all the other usual things you can
do with MySQL.

 Dave Stokes started using PHP when it was known as
Personal Home Page and started working for MySQL AN as a
PHP Developer. He is now a MySQL Commmunity Manager
for Oracle Corporation. He lives in Texas with the required
hound dog and pickup truck. @stoker

Output 2

MYSQL [LOCALHOST+ SSL/DEMO] SQL> SELECT DOC FROM ARCHITECT;

+--+
| doc |
+--+
| {"_id": "00005b100c730000000000000001", "name": "PHP Architect"} |
+--+
1 row in set (0.0017 sec)
MySQL [localhost+ ssl/demo] SQL>

Listing 1

 1. #!/usr/bin/php
 2. <?php
 3. // Connection parameters
 4. $user = 'root';
 5. $passwd = 'S3cret#';
 6. $host = 'localhost';
 7. $port = '33060';
 8. $connection_uri = 'mysqlx://' . $user . ':' . $passwd
 9. . '@' . $host . ':' . $port;
10.
11.

12. // Connect as a Node Session
13. $nodeSession = mysql_xdevapi\getNodeSession($connection_uri);
14. // "USE world_x"
15. $schema = $nodeSession->getSchema("world_x");
16. // Specify collection to use
17. $collection = $schema->getCollection("countryinfo");
18. // SELECT * FROM world_x WHERE _id = "USA"
19. $result = $collection->find('_id = "USA"')->execute();
20. // Fetch/Display data
21. $data = $result->fetchAll();
22. var_dump($data);

Sam
ple

phparch.com
https://twitter.com/stoker

Sam
ple

http://phpa.me/mag_subscribe

	Table of Contents
	State in the Stateless World
	Luka Mužinić

	Making Use of Our Robot Overlords
	Brian Thompson

	Pro Parsing Techniques with PHP, Part Two: Fault Tolerance
	Michael Schrenk

	MySQL Without The SQL—Oh My!
	Dave Stokes

	Navigating State
	Oscar Merida

	Contributing is More Than Coding
	James Titcumb

	Issue Workflows for Teams
	Chris Tankersley

	June Happenings
	Secure Remote Password Authentication
	Eric Mann

	Build an Algorithm
	Edward Barnard

	CakePHP, Part Two
	Joe Ferguson

	Do We Need Developers?
	Eli White

