
www.phparch.com

Masterful Code
Management

The Dev Lead Trenches:
From Issues to Code

Community Corner:
Where PHP Communities
Meet

Security Corner:
Secure Tokens

Education Station:
That’s Logical

The Workshop:
Make PhpStorm Work for
You

finally{}:
Work / Life / Kids …
Balance?

ALSO INSIDE

Debugging PHP With Xdebug

Succeeding as a Freelancer
Developer

MySQL Generated Columns,
Views, and Triggers

Pro Parsing Techniques With
PHP, Part Three Using Regular
Expressions

August 2018
Volume 17 - Issue 8

omerida
Rubber Stamp

Focused
Elastic energy at your
fingertips. Launch.
Rebuild. Clone. Swap.
Grow. Instantly.

Care
Thermo.io Physicists
are here to help
you out without
confiscating root.

Start building
with a focused,

faster cloud.
Fully supported by Thermo

Physicists there to help solve
any of your problems..

Get your $150 credit today using code
DISCOUNT:

Thermo.io
WEB:

Sales@Thermo.io
EMAIL:

833-3-THERMO
PHONE:

Faster
Deploy in
seconds on our
high-availability,
SSD-driven platform.

PHPDEVELOPER

http://thermo.io

world.phparch.com

2018

The 4th annual PHP conference
for Washington D.C.

Save the dates to attend

November 14–15, 2018
Washington, D.C.

http://world.phparch.com
http://world.phparch.com
https://world.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Managing Partners
Oscar Merida, Sandy Smith

php[architect] is published twelve times a
year by: musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Subscriptions
Print, digital, and corporate
subscriptions are available. Visit
https://www.phparch.com/magazine to
subscribe or email contact@phparch.com for
more information.

Advertising
To learn about advertising and receive
the full prospectus, contact us at
ads@phparch.com today!

Contact Information:
General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2018—musketeers.me, LLC
All Rights Reserved

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

August 2018
Volume 17 - Issue 8

2 Editorial:
Masterful Code Management
Oscar Merida

24 Security Corner:
Secure Tokens
Eric Mann

28 The Dev Lead Trenches:
From Issues to Code
Chris Tankersley

32 The Workshop:
Make PhpStorm Work for You
Joe Ferguson

36 Community Corner:
Where PHP Communities Meet
James Titcumb

38 July Happenings

40 Education Station:
That’s Logical
Edward Barnard

44 finally{}:
Work / Life / Kids … Balance?
Eli White

Features
3 Debugging PHP With Xdebug

Mark Niebergall

9 Succeeding as a Freelancer
Developer
Stefany Newman

14 MySQL Generated Columns,
Views, and Triggers
Dave Stokes

18 Pro Parsing Techniques
With PHP, Part Three Using
Regular Expressions
Michael Schrenk

Columns

Sam
ple

musketeers.me
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me

18 \ August 2018 \ www.phparch.com

FEATURE

Pro Parsing Techniques With PHP, Part
Three Using Regular Expressions

Michael Schrenk

This is the final installment of a set of three articles offering strategies for parsing text with
PHP. The first article described the basics of parsing, followed by an article on developing
fault tolerant parsing strategies. This article is dedicated to regular expressions.

Regular expressions, or sometimes simply called regex, represent a powerful set of tools
which allow developers to split strings, perform character substitutions, and extract text
based on matched patterns. The patterns, used in regular expressions, are an actual
language that describe combinations of type castings and values that match the text you
want to split, substitute, or extract. Regular expressions are an enormously powerful tool
for the developer who understands them.

Scripts referenced though this
series are available for download at
http://www.schrenk.com/parsing.

PCRE and POSIX functions
There are two ways to use regular

expressions in PHP, POSIX, or extended
regular expressions, and Perl-Compati-
ble Regular Expressions1 (PCRE). The
POSIX set of functions—which all start-
ed with ereg_—have been deprecated
since PHP 5.3 and removed in PHP
7.0, so there’s little need to mention
them further. Instead, we’ll focus our
discussion to the PCRE version of regu-
lar expression functions. You can easily
recognize the PCRE regular expression
functions because they all start with the
prefix “preg”. Of these, there are five
separate commands:

• preg_replace(),
• preg_replace_callback(),
• preg_split(),
• preg_match(), and
• preg_match_all().

1 Perl-Compatible Regular Expressions:
http://php.net/book.pcre

These functions allow developers to:

• substitute characters within a string
when they match a predefined
pattern,

• detect if a pattern of characters
exists within a string, extract a
string that matches a pattern,

• or split strings where a pattern is
found.

Let’s take a quick look at how these
functions work.

For now, don’t worry if you don’t
understand how patterns work. We’ll
explore that later.

preg_replace()
The first of the PHP regular expression

functions we’ll look at, preg_replace(),

does a string substitution when char-
acters in the input match a pattern, as
shown below in Listing 1.
 Once Listing 1 is executed, the word
new will match and replace the pattern
in $subject. The resulting value of
$subject will be This is a new string.
Keep in mind our pattern will also
match the strings “tested”, “testing”,
and even “pretest” as we’ll see again
later.

If you need more complicated match-
ing logic, preg_replace_callback allows
you to use another function to calculate
and return the replacement string.

Listing 1

 1. <?php
 2. /*
 3. * Example: preg_replace() replaces one string with another,
 4. * when a pattern is matched.
 5. * USAGE: preg_replace($pattern, $replacement, input_string);
 6. * Where: $pattern is the pattern to match
 7. * $replacement is the substitution string, and
 8. * $subject is the source string.
 9. */
10. $pattern = '/test/';
11. $replacement = 'new';
12. $subject = 'This is a test string';
13. $parsed_string = preg_replace($pattern , $replacement, $subject);

Sam
ple

phparch.com
http://www.schrenk.com/parsing
http://php.net/book.pcre

 www.phparch.com \ August 2018 \ 19

Pro Parsing Techniques With PHP, Part Three Using Regular Expressions

preg_split()
This function splits a string at the point where the pattern is

found, as shown below in Listing 2.
When Listing 2 is executed, $before will contain the string

that was to the left of the pattern. So, it will hold the text, "This
is a". The contents of $after, on the other hand, will contain
that which is to the left of the pattern, or string.

preg_match()
The function preg_match() returns a Boolean value (0 or 1)

depending on if the pattern is found in the subject string. In
the example below, shown in Listing 3, $bool will be set to
true because the pattern "This" is found in the input string.

The preg_match() function doesn’t affect the original string.
It only indicates if a pattern is found in the input string.

You can also pass an optional third parameter, an array, to
preg_match(). If any part, or parts, of the pattern are found,
the entire matching string will be returned in the first array
element. Any other array elements will contain all individual,
and subsequent, matches of the pattern.

preg_match_all()
The function preg_match_all() is essentially the same

as preg_match(), but it always assumes you want to find all
matches to the pattern. These functions mainly differ in that
preg_match(), with two passed parameters, will stop after the
first pattern match. So, if you only need to match the first
match, preg_match() is the function to use.

An example of preg_match_all() is shown below in Listing
4.

In the above example, var_dump($result_array) will hold
the following.

array (size=1)
 0 =>
 array (size=2)
 0 => string 'test' (length=4)
 1 => string 'test' (length=4)

Differences From PHP Built-In Functions
You may notice these regular expression functions are

very similar to several PHP built-in functions. For exam-
ple, preg_replace() is very similar to str_replace(). The
function preg_split() is much like substr() and explode(),
while preg_match() is nearly the same as strstr(). Further-
more, preg_match_all() is very similar to the parse_array()
command, which is not a PHP built-in function, but was
described in the first article of this series. Again, functions
used in the first article are available for download2.

While these functions are similar, they differ in one very
important way. The regular expression functions are not
limited to matching a simple string pattern like "test". The
patterns used in regular expressions are capable of defining

2 download: http://www.schrenk.com/parsers

patterns that might:

• match anything that’s a number,
• match any alphanumeric characters,
• Match ranges of characters,
• match any characters of a specific length,
• match words, of a specific length, that start, end or

contain a specific pattern.
More so, regular expression patterns can be combined to

match just about any conceivable pattern. It’s the ability to
match patterns of various types which makes regular expres-
sions so rich and powerful.

Listing 2

 1. <?php
 2. /*
 3. * Example: preg_split() splits a string where a specific
 4. * pattern is matched.
 5. * USAGE: preg_split($pattern, $subject);
 6. * Where: $pattern is the pattern to match
 7. * $subject is the source string.=
 8. */
 9. $pattern = '/test/';
10. $subject = 'This is a test string';
11. list($before, $after) = preg_split($pattern, $subject);

Listing 3

 1. <?php
 2. # EXAMPLE: preg_match() returns a true/false dependent on
 3. # pattern being found in a string.
 4. # USAGE: preg_match($pattern, $input_string)
 5. # Where: $pattern is the pattern to match
 6. # $subject is the source string.
 7. $pattern = '/test/';
 8. $subject = 'This is a test string';
 9. $bool = preg_match($pattern, $subject);

Listing 4

 1. <?php
 2. /**
 3. * Script 4
 4. * EXAMPLE: preg_match_all() returns every occurrence that
 5. * matches the pattern
 6. * USAGE: preg_match_all($pattern, $subject, $result_array)
 7. * Where: $pattern is the pattern to match
 8. * $subject is the source string.
 9. * $result_array is returned matches.
10. */
11. $pattern = '/test/';
12. $subject = 'This is a test of a test string';
13. preg_match_all($pattern, $subject, $result_array);

Sam
ple

phparch.com
http://www.schrenk.com/parsers

20 \ August 2018 \ www.phparch.com

Pro Parsing Techniques With PHP, Part Three Using Regular Expressions

What Are Patterns?
Regular expression patterns are

a language specifically designed for
pattern definition. In the previous
examples, our pattern was a specific
set of characters, like /test/. When
this is the case, our regular expression
will match all occurrences of the string
"test", even if it exists in larger sets of
characters like "retest" or "testing".

There are more ways to create regu-
lar expression patterns than what will
fit in this article. So, we’ll use this space
to introduce you to just enough tech-
niques so you can thoughtfully explore
more complete documentation. (An
excellent online tutorial on regular
expression patterns can be found at on
php.net under Pattern Syntax3 We will
build toward a test case, where we build
a pattern which helps us extract all
phone numbers from a document.

Perhaps the first thing you’ll notice
about patterns is that they are typically
encased between backslashes.

3 Pattern Syntax:
http://php.net/reference.pcre.pattern.syntax

/pattern/

These backslashes are not to be
confused with slashes, which define
special characters. For example, the
pattern /\d/ will match any single
digit. The pattern /\d\d\d/ will match
any three consecutive digits. Notice I
didn’t say it will match any three-dig-
it number, because it will also match
any three consecutive digits in a larger
number as well. If we wanted to match
any sequence of three random non-dig-
it characters, we could use the pattern
/\D\D\D/, or simply /\D{3}/.

These patterns can get quite complex.
The combination of slashes and back-
slashes, also known as the “leaning
toothpick syndrome,” can be hard to
look at. Rather than focusing on all
the options, let’s learn a few patterns by
using them in an example application.

Using Regular Expressions
to Extract Phone Numbers

Regular expressions are perhaps most
useful when you need to extract arbi-
trary information from a block of text.
For example, patterns are useful when

parsing all the phone numbers from a
document. I may be taking some liber-
ties by calling phone numbers arbitrary
because obviously, phone numbers do
follow one of several specific patterns.
But they are also arbitrary in that the
phone numbers are not associated
with a specific person, time, or another
context.

The first step in developing a pattern
that will match phone numbers is to
decide what pattern, or patterns, must
be matched. The definitions we’ll look
at only relate to North American phone
numbers. Phone numbers from other
parts of the globe may be formatted
differently. Our phone numbers tend to
follow the specific pattern below:

• aaa d ppp d nnnn

• aaa is the three-digit area code
• d is some type of delineator
• ppp is a three digit prefix, and
• nnnn is a four digit line number.

Now that we have developed a basic
template for what we plan to match,
let’s create a test case. For example, the
phone numbers below in Listing 5 are a

Sam
ple

phparch.com
http://php.net/reference.pcre.pattern.syntax
http://phpa.me/functional-programming-in-php-2

 www.phparch.com \ August 2018 \ 21

Pro Parsing Techniques With PHP, Part Three Using Regular Expressions

good start.
Let’s examine the pattern in Listing

5. You’re already familiar with the slash
characters at the start end of the pattern.
You should also recognize the \d{3} and
\d{4} patterns that match three and four
digit numbers respectively. Additional-
ly, the \D pattern matches any non-digit
character.

When you put this pattern togeth-
er, you’re essentially saying, “Extract
anything that matches three digits,
followed by any alpha character,
followed by three more digits, another
alpha character, and four more digits.”

As it is, our initial pattern matched
only four of the numbers, "111 222

3333", "100 222-3333", "111.222.3333",
and "100 222-3333". What’s missing
are the phone numbers that contain
parentheses and the one that contains
unformatted numbers. To match those,
we will create two new patterns and
then combine them with the initial
pattern we developed.

This final script correctly extracts all
the phone numbers in our test string
by adding two new patterns, and then
combining all three with a Boolean OR
operator. You’ll notice in the second
pattern, the parentheses are added, but they are preceded by
a backslash to indicate a literal character, or that the open
and close parentheses are the only acceptable matches. This
is because parenthesis can be used to group patterns within a
regular expression.

The third pattern simply says “match on any sequence
of exactly 10 digits”. Combining separate patterns allows
patterns to be debugged independently. Also, combining
debugged patterns also makes the whole pattern easier to
read. For example, if one pattern were defined, it would be
much harder to debug and would look like this.

/\d{3}\D\d{3}\D\d{4}|\(\d{3}\)\D\d{3}\D\d{4}|\d{10}/

Final Thoughts

Some people, when confronted with a problem, think “I
know, I’ll use regular expressions.” Now they have two
problems.

–Jamie Zawinski,

This is a very quick tour of regular expressions. Hopeful-
ly, it will provide a foundation where you can explore more

on your own. Regular expressions are an incredibly power-
ful set of commands for pattern matching, string splitting,
and character substitution. So, it would appear that they are
particularly ideal for parsing tasks. Regular expressions are so
powerful that—for many developers I’ve talked to—they are
the primary text parsing tool. Regular expressions, however,
are a double-edged sword. While it’s true they’re powerful,
regular expressions are also complex and with many subtle
options. So while you might get a lot of parsing from a single
regular expression, you’ll also end up with scripts that are
difficult to read. And, anything that is difficult to read is also
difficult to debug, especially compared to the same parse
completed with a handful of PHP commands.

When Is the Best Time to Apply Regular Expressions?
Regular expressions are the perfect choice for applica-

tions like the previous phone number extraction example.
You should be cautioned, however, to limit the use of regu-
lar expressions to cases where the basic functions in the first
article of this series are insufficient for the task. I first made
this comment twelve years ago in the first edition of my book,
Webbots, Spiders, and Screen Scrapers, First Edition (2004, No
Starch Press, San Francisco). At the time, I didn’t realize how
controversial it would be to question if regular expressions
should be recommended for every parsing task. But after

Listing 5

 1. <?php
 2. // Create a test string containing phone numbers
 3. $string = "Example #1, 111 222 3333, Example #2, 100 222-3333,
 4. Example #3, 111.222.3333, Example #4, <td>100 222-3333</td>,
 5. Example #5, (111) 222 3333, Example #6, (111) 222-3333,
 6. Example #7, (111) 222.3333, Example #8, 1112223333";
 7.

 8. // Define a pattern
 9. $pattern = "/\d{3}\D\d{3}\D\d{4}/";
10.

11. // Run the regular expression
12. preg_match_all($pattern, $string, $matching_numbers);

Listing 6

 1. <?php
 2. // Test string containing phone numbers
 3. $string = "Example #1, 111 222 3333, Example #2, 100 222-3333,
 4. Example #3, 111.222.3333, Example #4, <td>100 222-3333</td>,
 5. Example #5, (111) 222 3333, Example #6, (111) 222-3333,
 6. Example #7, (111) 222.3333, Example #8, 1112223333";
 7.

 8. // Define patterns
 9. $pattern_1 = "\d{3}\D\d{3}\D\d{4}";
10. $pattern_2 = "\(\d{3}\)\D\d{3}\D\d{4}";
11. $pattern_3 = "\d{10}";
12. $pattern_combined = "/(" . $pattern_1 . "|" . $pattern_2
13. . "|" . $pattern_3 . ")/";
14.

15. // Run the regular expression
16. preg_match_all($pattern_combined, $string, $matching_numbers);

Sam
ple

phparch.com

Sam
ple

http://phpa.me/docker-devs

 www.phparch.com \ August 2018 \ 23

Pro Parsing Techniques With PHP, Part Three Using Regular Expressions

receiving a host of unanticipated emails
from angry regular expression aficiona-
dos, I backed off a bit on my prejudices.
A few years later, I wrote an addition-
al chapter for the second edition of
the book, solely on the effective use of
Regular expressions. And while I’ve
updated my biases accordingly, I still
feel strongly on the limited used of
regular expressions.

PHP has built-in parsers for XML
and HTML via DomDocument
and SimpleXML which can be more
fault tolerant especially for compli-
cated XML or malformed HTML.
If you need to parse JSON strings,
json_decode should be your tool of
choice instead of regular expres-
sions. Regular expressions shine
when your text is less structured.

Taming Complexity
The power of regular expressions

comes at the cost of simplicity. In most
software development, the simplest
approach is usually the easiest to devel-
op, read, debug, and maintain. And
while a very complex regular expression
pattern could take a day to develop and
two more days to document, it doesn’t
mean regular expressions need to be
hard to use. If you’ve looked at the
code from the first article in this series,
you’ll notice the function parse_array()
uses regular expressions. That func-
tion, however, hides the inner workings
of regular expressions in a wrapper
function, or a function that simply
repackages an existing function to make
it more readable. This wrapper function
accomplishes two things. First, it makes
your code much easier to read. For
example, if you wanted to parse all the
image tags from a webpage (contained
in the variable $webpage), you could use
either of the following scripts.

Both methods in Listing 7, return the
same values in the array $images. The
second technique, however, has a few
advantages. First, the second method
is much easier to understand, espe-
cially if you are not familiar with the
language regular expressions. And as

mentioned earlier, easier to understand
usually translates easier to debug, docu-
ment, and maintain. Not only does the
wrapper function only use a single line
of code in your script, but it also spares
you from needing to remember what
siU stands for.

Regular expressions, while powerful,
can also be difficult for people, who are
less familiar with regular expressions,
to read. It’s worth repeating—diffi-
cult to read means difficult to develop.
Sometimes that fact doesn’t matter,
because the parse is complex, and regu-
lar expressions are the only method
for extracting information. The other
reason for using a wrapper function
instead of the direct regular expression
is the wrapper helps focus the develop-
er on the task at hand. Instead of trying
to remember how the regular expres-
sion is written, a more human-readable,

debugged, wrapper function can be
used.

Where Regular Expressions Shine
The problem with regular expressions

is that, with just a pattern match, they
operate without context in which the
data exists. For example, in our phone
number parsing example, we didn’t
need to know if those phone numbers
belonged to anyone. If they had, the
context would be lost. But in cases
where simple (and sometimes not so
simple) patterns need to be matched,
regular expressions are irreplaceable.
But, as mentioned in the first article in
this series, I highly recommend explor-
ing simpler parsing strategies first.

Thanks for staying with me for this
series of articles on parsing. If you have
a comment, please drop me a line at
mike@schrenk.com.

 Michael Schrenk has developed software that collects and
processes massive amounts of data for some of the biggest news
agencies in Europe and leads a competitive intelligence
consultancy in Las Vegas. He consults on information security
and Big Data everywhere from Moscow to Silicon Valley, and
most places in between. Mike is the author of Webbots, Spiders,
and Screen Scrapers (2012, No Starch Press). Mike is also an
eight-time speaker at the notorious DEF CON hacking
conference. @mgschrenk

Listing 7

 1. <?php
 2. /**
 3. * Get image references from a web page using regular expressions.
 4. * Where: $www = a complete webpage
 5. */
 6.

 7. // With regular expressions
 8. preg_match_all('/(<img(.*)>)/siU', $www, $matching_data);
 9. $images = $matching_data[0];
10.

11. // With the parse_array() function
12. $images = parse_array($www, "<img", ">");

Related Reading

• RegEx is Your Friend by Liam Wiltshire. July 2016 issue.
https://phparch.com/magazine/2016-2/july/

• Pro Parsing Techniques With PHP, Part One: Simplifying Your Parsing Strategy
by Michael Schrenk. June 2018 issue
https://www.phparch.com/magazine/2018-2/june/

• Pro Parsing Techniques with PHP, Part Two: Fault Tolerance
by Michael Schrenk. July 2018 issue
https://www.phparch.com/magazine/2018-2/july/

Sam
ple

phparch.com
mailto:mike@schrenk.com
https://twitter.com/mgschrenk
https://phparch.com/magazine/2016-2/july/
https://www.phparch.com/magazine/2018-2/june/
https://www.phparch.com/magazine/2018-2/july/

Sam
ple

http://phpa.me/mag_subscribe
http://phpa.me/mag_subscribe

	Table of Contents
	Debugging PHP With Xdebug
	Mark Niebergall

	Succeeding as a Freelancer Developer
	Stefany Newman

	MySQL Generated Columns, Views, and Triggers
	Dave Stokes

	Pro Parsing Techniques With PHP, Part Three Using Regular Expressions
	Michael Schrenk

	Masterful Code Management
	Oscar Merida

	Secure Tokens
	Eric Mann

	From Issues to Code
	Chris Tankersley

	Make PhpStorm Work for You
	Joe Ferguson

	Where PHP Communities Meet
	James Titcumb

	July Happenings
	That’s Logical
	Edward Barnard

	Work / Life / Kids … Balance?
	Eli White

