
MODERNIZE YOUR PRODUCTIVITY
Oscar Merida, @omerida

September 20, 2018

HELLO

SLIDES
http://phpa.me/modernize-productivity

http://phpa.me/modernize-productivity

GOALS

I want to share with you how I try to stay productive and focused on projects. The goal is to write better code, meaning bugs don’t make it to production.

Speaker notes

A ROAD MAP
A road map for taming your development work�ow.

1. Start using Version Control
2. Script Your Deployments
3. Write Tests
4. Analyze Your Codebase

Typically I work solo or with one or two other developers. Without some well defined processes, your development work can be chaotic and stressful.

The goal is to spend less time fighting fires, less on routine tasks, and more time on what’s important.

Speaker notes

THE BAD OLD DAYS / POOR PRACTICES

EDITING IN PRODUCTION

You should never edit code directly on your production site, either to fix a bug or try to identify the cause. If you can’t replicate a bug locally, how do you know you’re fixing the right thing?
How are you going to write a test or properly document the fix? How are you going to prevent the bug from happening again in the future? You need to be able to control the INPUTs to
your application and the environment it runs in (PHP version, Web Server, etc) to diagnose the causes of a bug or unexpected behavior. But ultimately, the problem is that this is highly
risky (you could alter or delete data) and disruptive (you could affect behavior for real users).

Speaker notes

MANUALLY UPLOADING FILES

Manually uploading files is error prone, especially if many files and directories are involved. You may upload the wrong file or upload it to the wrong place. You might forget to upload a
critical file or directory. Unless you’re fix really only involves editing a single file, it is not an atomic operation. On a high traffic site, you’ll be affecting real-time requests from your users.
There are no safety nets in case you mess up. You could very well be making things worse.

Speaker notes

NO SOURCE OF TRUTH

If you’re production server is your canonical representation of your application’s code … how do you replicate the environment or know your dependices—like what version of PHP you
use and if its safe to upgrade to a new version? How do you analyze the codebase? How do you track what changes have been made over time, and who made them? For security, can
you find all the passwords and API tokens used by your application? Are they outside the web root?

Speaker notes

THE SOLUTION?

Robots! I mean … automation. Computers are great at repetitive tasks. We should use tools which can repeat tasks and produce the same deterministic results every single time.

Speaker notes

VERSION CONTROL

START USING GIT

Create a local repo.

https://git-scm.com

git init

A local repository saves snapshots of your codebase on your own machine, eventually you’ll want to share those changes elsewhere, but you don’t need that at the start.

Note git is not GitHub (or gitlab), you don’t need the latter to start using git.

Speaker notes

https://git-scm.com/

TRACKING CHANGES
Add a changed �le, commit the change.

 git add foo.php bar.php
git commit -m "Fixed SQL injection bug"

If you’re comfortable at the command line, basic git usage comes with a little practice. I use the Git integration with PhpStorm, but any decent IDE or code editor will have a plugin for Git
integration

Speaker notes

BRANCHES
Create a branch and start working on it

Merge a branch

git checkout -b 53-db-updates

 git checkout master
git merge 53-db-updates

A branch let’s you work on a single task—or experiment in some direction—without affecting your “main” codebase. You can try things out, and if they work you merge it back to the
master branch. You can share a branch with other repositories, or it could never leave your local repo.

If you’re just starting, this is sufficient. Eventually, if you have a lot of commits and merges, you’ll want to squash commits and rebase your changes to keep your commit history cleaner.

Speaker notes

SHARING CODE
Setup a repository to push to. has free, private repos.

After you commit:

To retrieve changes

GitLab

git remote add gitlab https://server/namespace/project.git

git push gitlab

git pull gitlab

A typical workflow is to have a “blessed” repository which receives the changes made by all collaborators. A push will send changes from one or more branches to those branches on the
shared repo. From there, another user can pull (fetch+merge) those changes to their repository.

Speaker notes

https://gitlab.org/

A GIT WORKFLOW
Use branches to re�ect your deployment environments. master could be your

development branch and production your live site.

1. When working on new features or bug�xes, create a feature branch.
118-new-account-email

2. When work is ready for testing or live, merge the feature branch into master
for testing then to production for release.

See https://nvie.com/posts/a-successful-git-branching-model/There are many ways to work with git. They all have their strengths and weaknesses, but I like gitflow for my projects.

It takes a little discipline, but following this even if you’re the only developer keeps your work more organized. You can easily work on multiple requests without mixing them together.
Imagine your working on adding a new feature to an ecommerce site when a critical bug is found in the shopping cart checkout proces. You have to stop to fix the bug, so sales don’t stall.
If you use feature branches, each of these tasks is isolated. There’s no risk of your new feature affenting the new fix and you can deploy each independently.

For this to work, it’s also important to write good commit messages and to have an issue or ticket for every task. Down the road, its helpful to lookup an issue for a given commit to get
context and this is also useful if you have to prepare reports about what you’ve worked on.

Speaker notes

https://nvie.com/posts/a-successful-git-branching-model/

GIT HOOKS - PHP LINTING
Custom scripts run when speci�c events happen. Use .git/hooks/pre-

commit to ensure there are no syntax errors.

From

See Also:

parse_error_count=0
for path in ${*:$arg_lookup_start}
do
 php -l "$path" 1> /dev/null
 if [$? -ne 0]; then
 parse_error_count=$[$parse_error_count +1]
 php_errors_found=true
 if ["$check_all" = false]; then
 echo "Stopping at the first file with PHP Parse errors"
 exit 1
 fi
 fi
done;

https://github.com/hootsuite/pre-commit-php

https://github.com/bruli/php-git-hooks
php-git-hooks can install hooks useful for PHP projects that not only lint your code, but also check the code style and run many of the quality tools we’ll see later. Unlike SVN, git hooks
have to be installed separately on each repository, so it takes a little more setup and effort.

Speaker notes

https://github.com/hootsuite/pre-commit-php
https://github.com/bruli/php-git-hooks

AUTOMATIC DEPLOYMENTS

RSYNC
A “straightforward” �rst step.

rsync -rzihc --delete -e "ssh -i $KEYFILE" --exclude=".idea"
 --exclude=".git" \ --exclude="sites/default" \
 --exclude="sites/all/modules/devel" \
 ./web/ "$USER"@"$HOST":$DEST_DIR
ssh "$USER"@"$HOST" -i $KEYFILE "cd $DEST_DIR ; drush cc all"

If you can use SSH to log in to a server, you can use rsync to transfer files. It’s very efficient since it uploads only files which have changed.

It can be tedious to get the switches correct, you’ll want to inventory what directories to exclude (upload folders for example). It can be very quick, but still not atomic. There’s also no
provision for running post deployment script to clear caches, or run database migrations. You’ll end up creating a shell script for this.

Speaker notes

GIT PULL
Let’s use Git to synchronize changes.

git pull gitlab

You can use git hooks to run tasks after a successful pull. To make this work consistently you should never be editing files on the target, otherwise you may have to manually merge the
changes and at some point push them back to the remote. Downsides include depending on your git repo’s availability in order to deploy. So if you use GitHub and it’s having connectivity
issues, you have to wait for them to resolve it.

Also, make sure you’re not exposing your .git directory in your webroot, since this is a security vulnerability.

Speaker notes

DEPLOYER - RECIPES
Uses a recipe to de�ne tasks to run on a remote host. https://deployer.org

set('repository', 'git@domain.com:username/repository.git');
set('shared_files', [...]);
set('shared_dirs', ['var/log', 'var/sessions']);
set('shared_files', ['.env']);
set('writable_dirs', ['var']);

Install it with Composer. You define your hosts, stages like testing and production, and tasks to run to deploy your code, like database migrations.

Speaker notes

https://deployer.org/

DEPLOYER - TASKS
De�ne tasks that are part of deploying code

desc('Migrate database');
task('database:migrate', function () {
 run('{{bin/console}} doctrine:migrations:migrate --allow-no-migration');
});
desc('Clear cache');
task('deploy:cache:clear', function () {
 run('{{bin/console}} cache:clear --no-warmup');
});

DEPLOYER - DEPLOY
dep deploy

desc('Deploy project');
task('deploy', [
 'deploy:info',
 'deploy:prepare',
 'deploy:lock',
 'deploy:release',
 'deploy:update_code',
 'deploy:shared',
 'deploy:vendors',
 'deploy:writable',
 'deploy:cache:clear',
 'deploy:cache:warmup',
 'deploy:symlink',
 'deploy:unlock',
 'cleanup',

Deployer will checkout your code to your servers, run composer install, and more. Shared folders are not changed between releases, new code goes in a releases directory. Once all
the files are ready a symlink is switched to point at the current release. In the end, this switch is very fast and means one request will always be served by a specific release. To make it
atomic, install

Speaker notes

https://github.com/etsy/mod_realdoc

https://github.com/etsy/mod_realdoc

ROCKETEER
Another PHP based task runner and deploy tool.

http://rocketeer.autopergamene.eu

rocketeer deploy

Based on capistrano but integrates better with PHP projects. Like deploy, it’ll create three folders in to deploy your application : releases and shared. A current symlink will point to
the latest deployed releases. When you deploy, it can checkout your code from git, run composer install, and more.

Speaker notes

http://rocketeer.autopergamene.eu/

TESTING

BEHAT
Used for Behavior-Driven-Development (BDD).

Write features in plain english, which Behat can execute for accceptance. Under the hood, it uses Mink to fetch pages and test for various elements.

Speaker notes

BEHAT - GETTING STARTED
1. Tackle one or two trivial tasks
2. Identify critical tasks and write feature tests.

A good first task is ensuring your footer displays and the copyright year on your page is the current year. Don’t tackle a complex tasks to start with—a simple task will ensure you configure
your testing environment correctly (and gives you an easy win).

Then, start writing tests for critical tasks. A critical task is anything which would make your boss (or your bosses boss) notice. For phparch.com, one critical flow is the shopping cart and
checkout workflow. There are others for applying sales tax correctly, talking to our backend API, and more.

As your test suite grows, group critical tasks by similarity, this can come in handy whne you only need to run tests for your API endpoints, for example.

Speaker notes

BEHAT - USER REGISTRATION
Feature: New User Registration
 Scenario: A new user can create an account
 Given I am on the register page
 Then I should see the register form
 Then I enter information for a new user in the form
 Then I should be on "/account"
 Then I should see my Recent Digital Purchases

This is a Behat feature. The goal is that any stakeholder could write a feature and define how something is supposed to work in plain English.

Speaker notes

BEHAT - USER REGISTRATION

 /**
 * @Then I enter information for a new user in the form
 */
 public function iEnterInformationForANewUserInTheForm() {
 // use the factory to create a Faker\Generator instance
 $faker = Faker\Factory::create();
 $this->page()->fillField('email', $faker->email);
 $password = $faker->password(8);
 $this->page()->fillField('password-1', $password);
 $this->page()->fillField('password-2', $password);
 $this->page()->fillField('first-name', $faker->firstName());
 $this->page()->fillField('last-name', $faker->lastName);
 $this->page()->pressButton('register');
 }

On the flip side, once a step in a feature is defined, you can create PHP code to define the steps required in the browser for it. Here we are using Faker to get example data, then fill in
registration fields, and press the submit button. The Mink class has many helper functions for interacting with an HTML page.

Speaker notes

BEHAT - STRIPE CHECKOUT
Feature: Magazine Subscriptions

 @javascript @stripe
 Scenario: Expired cards are declined
 Then I click the single issue purchase button
 Then I should be on the basket page
 Then I should see the following in my basket:
 | item | price | qty |
 | php[architect] | $6.00 | 1 |
 Then I am on the payment page
 Then I click on the stripe payment button
 Then I enter an expired card in stripe
 Then I should see "Your card was declined."

You’re not limited to just interacting with basic HTML. Use the @javascript annotation to tell Behat to use Selenium or PhantomJS instead of the default client.

Speaker notes

BEHAT - STRIPE CHECKOUT

// #CSS id of stripe popup
$this->getSession()->switchToIFrame('stripe_checkout_app');
$iframe = $this->getSession()->getPage();
// fill out user address fields & submit
// ...

// this number goes through stripe but then will fail
$iframe->fillField('Card number', '4000000000000341');
$iframe->fillField('Expiry', '12/22');
$iframe->fillField('CVC', '123');
$iframe->find('css', 'button[type=submit]')->click();

Defining a step which depends on Javascript is not much different than what we saw earlier. Here we look for Stripe’s iframe to enter a known-bad credit card number and then submitting
it to see the response returned. If you can investigate a page’s DOM via Chrome or Firefox’s Inspector, you can test it’s behavior.

Speaker notes

IMPLEMENTATION

You shouldn’t budget for testing as a separate task. It has to become a part of how you work. New bug reported? Write a test case for it before you fix it. Don’t let managers cut your
testing time out of your estimates. This seems expensive at first, but expanding your test suite pays off quickly in preventing regressions and ensuring your site’s critical features always
work.

Speaker notes

UNIT TESTING
PHP Unit,
Codeception,

https://phpunit.de
https://codeception.com

Codeception users PHP unit and provides a BDD layer for feature/integration testing.

Unit testing is meant to test a “unit” of code, typically a function or method. We want to verify that given a specific set of inputs, our code produces the expected output. To be unit-testable,
your code should avoid using static calls and make use of dependency injection. This makes it easier to replace classes which talk to services like a database or an api with a mock class
which behaves consistently and executes quickly.

Speaker notes

https://phpunit.de/
https://codeception.com/

UNIT TESTING EXAMPLE

public function testLoginWrongPassword() {
 $this->expectException(\Vesta\Exception\ReportableException::class);
 $this->expectExceptionMessage('Login failed. Please try again.');
 $dbMock = $this->getDBMock(); // setup pdo and statement

 $testUser = $this->createMock(\User::class); // User mock
 $userFactory = $this->createMock(\Vesta\User\UserFactory::class);
 $userFactory->method('load')->willReturn($testUser);

 $auth = new \Vesta\User\Authenticator($dbMock, $userFactory);
 $success = $auth->login('oscar@musketeers.me', 'notreallymypassword');
}

Here, we mock two dependencies: a PDO connection which simulates fetching user information and a factory class which creates a User object (from some data source). Mocks are used
to mimic another classes behaviors. If our unit test breaks, we can be confident it is not the dependency that failed, it is our own logic.

Speaker notes

WHICH TESTS?
1. Write Behat/Feature tests �rst
2. Then write Unit tests as you refactor and �x classes and methods

Feature tests run slow, however you should start with them because they capture how your application behaves (or is supposed to behave).

Once you can rely on Behat to catch regressions and errors, you can start refactoring your underlying classes to decouple them and improve your application architecture. Write unit tests
(which are quicker) to test the refactored behavior.

Speaker notes

QA TOOLS

STATIC ANALYZERS
More than just PHP linting. These tools analyze your code without executing it.

Static analysis tools will automatically scan your codebase and look for things like undefined classes being used, correct number and type of parameters passed to functions or methods,
correct value returned, phpdoc blocks match function signatures & returns, evaluate cyclomatic complexity, and more. Some can also look for parts of your code which might break if you
upgrade from PHP 5 to 7.

Speaker notes

EXAKAT
https://www.exakat.io

Exakat can also identify unused resources, supplement security reviews with automated checks.

Speaker notes

https://www.exakat.io/

PHPSTAN
https://github.com/phpstan/phpstan

phpstan can ratchet up it’s strictness via defined levels, so you can start fixing the easiest stuff first.

Speaker notes

https://github.com/phpstan/phpstan

PHAN
https://github.com/phan/phan

phan created by Rasmus Lerdorf and Andrew Morrison focus on finding incorrect code instead of proving the correctness of code. Can check for unreachable statements, validate PCRE
regexes, check coding style conventions, and output results in different formats to help integration with other build/analysis services.

Speaker notes

https://github.com/phan/phan

DEPHPEND
Identify dependencies in your code https://dephpend.com

depHPend analyses your apps dependencies. See which classes depend on others to focus refactoring efforts.

Speaker notes

https://dephpend.com/

PARSE
Scan for security vulnerabilities

https://github.com/psecio/parse

Checks for enabling display errors, use of eval, usages of $_REQUEST and $GLOBALS and more.

Speaker notes

https://github.com/psecio/parse

PHP CODESNIFFER
Enforce a coding standard.

https://github.com/squizlabs/PHP_CodeSniffer

Don’t waste time arguing over a coding style. Just agree on one and stick to it. Yuu can then use PHP CodeSniffer to audit it.

Speaker notes

https://github.com/squizlabs/PHP_CodeSniffer

PHP COPY/PASTE DETECTOR
Detect reused code.

https://github.com/sebastianbergmann/phpcpd

https://github.com/sebastianbergmann/phpcpd

PHP MESS DETECTOR
Find overly complicated code.

https://phpmd.org

PHPMD will look for possible bugs, overcomplicated expressions, and more. It offers rules grouped into things like “Clean Code”, “Design Rules”, and more.

Speaker notes

https://phpmd.org/

SO MANY MORE
https://phpqa.io/index.htm

https://phpqa.io/index.htm

QAFOO QUALITY ANALYZER
https://github.com/Qafoo/QualityAnalyzer

Consolidates reporting on various metrics using many of the tools mentioned earlier. It’s easy to setup and have it analzye your codebase and then provide a dashboard consolidating
many of the tools mentioned earlier.

Speaker notes

https://github.com/Qafoo/QualityAnalyzer

AUTOMATION

BAKING DEV ENVIRONMENTS
Docker + Docker-compose
Vagrant + Ansible

Setting up a development environment should be a pain point for only one person on your team. Use the same tool across your team to ensure everyone’s machine works the same so
there are no surprised. That is, “It worked on my machine.”

Speaker notes

COMPOSER SCRIPTS

"scripts": {
 "check": [
 "@cs",
 "@test"
],
 "cs-check": "phpcs",
 "cs-fix": "phpcbf",
 "test": "vendor/bin/codecept run",
 "test-coverage": "phpunit --colors=always --coverage-clover clover.xml",
 "upload-coverage": "coveralls -v"
},

https://www.masterzendframework.com/series/tooling/composer/automation-
scripts/

Besides installing and managing project dependencies, Composer can run scripts for you. This is handy for saving and sharing often used commands to run tests or static analysis tools.

Speaker notes

https://www.masterzendframework.com/series/tooling/composer/automation-scripts/

SCAFFOLDING TOOLS
Symfony,
Laravel,
Drupal,
WordPress,

https://symfony.com/doc/current/console.html
https://laravel.com/docs/5.6/artisan
https://drupalconsole.com

https://wp-cli.org

If you work with a particular framework or CMS, learn to use the command line tools availble for it. You can save yourself time (and prevent errors) when you have to define routes, clear
caches, export data, and more. See Steve Grunwell’s PHP CLI talk for more.

Speaker notes

https://symfony.com/doc/current/console.html
https://laravel.com/docs/5.6/artisan
https://drupalconsole.com/
https://wp-cli.org/

SYMFONY CONSOLE
https://symfony.com/doc/current/components/console.html

You can use the Symfony Console component to put PHP to use at the command line. I use this to automate a lot of frequent tasks. Almost everything has an API nowadays, so there’s no
technical limit here. If you do a task regularly (monthly), invest some time in automating as much as you can.

Speaker notes

https://symfony.com/doc/current/components/console.html

THANK YOU
Feedback:

I publish php[architect], a monthly magazine for PHP developers.

php[world] is our fall conference in Washington D.C.

https://joind.in/talk/6e37f

@omerida

www.phparch.com

world.phparch.com

https://joind.in/talk/6e37f
https://twitter.com/omerida
https://www.phparch.com/
https://world.phparch.com/

