
www.phparch.com

MagniPHPicent 7.3

The Dev Lead Trenches:

How Long Will

 It Take?

Community Corner:

Finding the Perfect

Development Job

Security Corner:

Thinking Like

an Attacker

Education Station:

Producer-Consumer

Programming

The Workshop:

Describe Your Tests

with Kahlan

finally{}:

The Seven Deadly Sins

of Programming: Pride

ALSO INSIDE

PHP 7.3 is On Track!

Upgrading Old
Legacy Apps to
PHP 7 and Beyond

Using the Symfony
Workflow Component
as a State Machine
for Ecommerce

September 2018
Volume 17 - Issue 9

omerida
Rubber Stamp

Focused

Elastic energy at your
fingertips. Launch.
Rebuild. Clone. Swap.
Grow. Instantly.

Care

Thermo.io Physicists

are here to help

you out without

confiscating root.

Start building
with a focused,

faster cloud.
Fully supported by Thermo

Physicists there to help solve
any of your problems..

Get your $150 credit today using code
DISCOUNT:

Thermo.io

WEB:

Sales@Thermo.io

EMAIL:

833-3-THERMO

PHONE:

Faster

Deploy in
seconds on our
high-availability,
SSD-driven platform.

PHPDEVELOPER

http://thermo.io

world.phparch.com

2018

The 4th annual PHP conference

for Washington D.C.

Early Bird Sale until 9/15!

November 14–15, 2018
Washington, D.C.

Only $475
Full price: $795

http://world.phparch.com
http://world.phparch.com
https://world.phparch.com

Editor-in-Chief: Oscar Merida

Editor: Kara Ferguson

Managing Partners

Oscar Merida, Sandy Smith

php[architect] is published twelve times a
year by: musketeers.me, LLC
201 Adams Avenue
Alexandria, VA 22301, USA

Subscriptions

Print, digital, and corporate
subscriptions are available. Visit
https://www.phparch.com/magazine to
subscribe or email contact@phparch.com for
more information.

Advertising
To learn about advertising and receive
the full prospectus, contact us at
ads@phparch.com today!

Contact Information:

General mailbox: contact@phparch.com
Editorial: editors@phparch.com

Print ISSN 1709-7169
Digital ISSN 2375-3544

Copyright © 2018—musketeers.me, LLC
All Rights Reserved

Although all possible care has been placed in assuring the
accuracy of the contents of this magazine, including all
associated source code, listings and figures, the publisher
assumes no responsibilities with regards of use of the
information contained herein or in all associated material.

php[architect], php[a], the php[architect] logo, musketeers.
me, LLC and the musketeers.me, LLC logo are trademarks of
musketeers.me, LLC.

SEPTEMBER 2018

Volume 17 - Issue 9

2 MagniPHPicent 7.3
Oscar Merida

31 The Dev Lead Trenches:
How Long Will It Take?
Chris Tankersley

34 Security Corner:
Professional Paranoia: Thinking
Like an Attacker
Eric Mann

37 The Workshop:
Describe Your Tests with Kahlan
Joe Ferguson

41 Community Corner:
Finding the Perfect
Development Job
James Titcumb

43 Education Station:
Producer-Consumer Programming
Edward Barnard

51 August Happenings

52 finally{}:
The Seven Deadly Sins of
Programming: Pride
Eli White

Features

3 PHP 7.3 is On Track!
Damien Seguy

10 Upgrading Old Legacy Apps
to PHP 7 and Beyond
Sammy Kaye Powers

24 Using the Symfony Workflow
Component as a State
Machine for Ecommerce
Michelle Sanver

Columns

Sam
ple

musketeers.me
mailto:contact%40phparch.com?subject=php%5Barchitect%5D%20Subscription%20Inquiry
mailto:ads%40phparch.com?subject=
mailto:contact%40phparch.com?subject=
mailto:editors%40phparch.com?subject=
musketeers.me
musketeers.me
musketeers.me
musketeers.me
musketeers.me

 www.phparch.com \ September 2018 \ 3

PHP 7.3 is On Track!FEATURE

PHP 7.3 is On Track!
Damien Seguy

PHP 7.3 successfully passed the “feature freeze” deadline. On Aug. 1st, 2018 all features for
PHP 7.3 were identified. This triggered the first PHP 7.3 beta, on the following day, and, from
there, we’ll reach RC in September. It is time to review what this new PHP version has available
for us, help test PHP 7.3, and get ready.

1 What About Garbage?: https://phpa.me/ircmaxell-about-garbage

2 How to optimize the PHP garbage collector usage to improve mem-
ory and performance?: https://phpa.me/tideways-optimize-gc

3 Improvements to Garbage Collection (GC) in PHP 7.3, 5x boost
performance in tests

Improved Garbage Collector
One of the main improvement in the PHP 7.3 engine is the

garbage collector, also called GC.

The Garbage Collector is an internal tool that frees memory.
PHP accumulates new objects in memory, and when it reach-
es the infamous memory_limit, the garbage collector is fired to
check if any memory may be recycled. Then, PHP resumes
the normal execution of the script.

Most traditional PHP applications have no use for the
Garbage Collector. First, memory_limit is usually far beyond
what a script needs, so there is no need to collect memory;
PHP frees it all at the end of the execution. Secondly, the GC
only works on roots, which are large dynamical structures,
such as arrays and objects. Also, the script needs to allocate
ten thousand (10,000) of them, literally.

When PHP reaches the 10,000 limit, the GC is triggered.
It will be triggered more frequently, as long as it stays above
the limit (in particular, when leaving a context: a function,
a method, a closure). Until now, any application that went
beyond 10,000 would experience a lot of GC calls, and as
such, a sudden degradation of its performances.

With PHP 7.3, the GC is now significantly more efficient.
If it can’t reasonably free enough memory, it raises the limit.
This prevents many inefficient collections and keeps script
execution fast.

Applications that generate a lot of objects, like long-run-
ning CLI applications, event-driven, or framework-based
applications will benefit from this improvement. Yet, most of
applications will never come near the limit, and won’t feel a
difference.

More on this subject:

• What About Garbage?1

• How to optimize the PHP garbage collector usage to
improve memory and performance?2

• Improvements to Garbage Collection (GC) in PHP 7.3,
5x boost performance in tests3(GC) in PHP 7.3, 5x boost
performance in tests: https://phpa.me/react-etc-gc-php73]

Relaxed Heredoc/Nowdoc
Heredoc and nowdoc are a string definition syntax that is

adapted to large pieces of text. Here is a heredoc:

$x = <<<FRENCH
Maître Corbeau, sur un arbre perché,
Tenait en son bec un fromage.
Maître Renard, par l'odeur alléché,
Lui tint à peu près ce langage:
Et bonjour, Monsieur du Corbeau,...
FRENCH;

The syntax starts with a triple <, followed by a token. This
token is a classic PHP identifier: alphanumeric chars and
underscore. It must also start with a letter or an underscore.
The identifier is free. Here, we used it to comment on the
language being used. Other variations include SQL, HTML, GREM-
LIN, XML, PHP, YAML, DOT, etc.

The final identifier comes with a few restrictions; it should
be the first on its line, and only accepts a semi-colon with it.
Not even a space should be found on that line, or you’ll end
up with a syntax error, unexpected end of file.

Of course, the ending delimiter shouldn’t be found inside
the text, at the beginning of a new line. This is quite rare, so it
is really difficult to debug. When that happens, just make the
identifier longer.

Nowdoc and heredoc are close cousins: heredoc behaves
like a double-quote string and interpolates variables inside
single-dimensional arrays and properties. NowDoc encloses
the identifier in single quotes, and behaves like a single quote
string: no string interpolation is available. See Listing 1.

Listing 1

 1. <?php

 2. $animal = 'Corbeau';

 3. // Heredoc

 4. $x = <<<FRENCH

 5. Maître $animal, sur un arbre perché,

 6. FRENCH;
 7.

 8. // Nowdoc

 9. $x = <<<'FRENCH'

10. Maître $animal, sur un arbre perché,

11. FRENCH;

Sam
ple

phparch.com
https://phpa.me/ircmaxell-about-garbage
https://phpa.me/tideways-optimize-gc
https://phpa.me/react-etc-gc-php73

4 \ September 2018 \ www.phparch.com

PHP 7.3 is On Track!

In PHP 7.3, two constraints are
relaxed: first, the ending delimiter may
be freely followed by other operators.
So, it is now possible to use heredoc in
a function call.

$variable = 'THINGS';
print strtolower(<<<ENGLISH
ALL THOSE $variable
ENGLISH);

Secondly, the ending delimiter may
be moved to the left. There is no need
for it to be the first on its line. Better,
the indentation of that ending delimit-
er is the indentation for the text in the
Heredoc syntax. Look at that:

function foo() {
 return <<<MESSAGE
 Returned Message
 MESSAGE;
}

print foo();
// prints 'Returned Message'

The important point here is to use the
same indentation for the delimiter and
for every line in the text. PHP identifies
the indentation on the final delimiter
and uses it.

Also, to keep everyone happy, spac-
es and tabulations are both supported
for indentation. Could it be otherwise?
The rule is simple; stick to one of them.
Invalid indentation - tabs and spaces

cannot be mixed is an official PHP error
message.

More on this: Flexible Heredoc and
Nowdoc Syntaxes4

Trailing Comma for Calls
Another syntax upgrade for PHP 7.3

is the trailing comma. You may have
already met this comma in array defi-
nitions or in grouped namespaces. It
is now available for every function
and method call. The final empty slot
won’t be send to the called method, it
is simply ignored as shown in Listing 2.

The rationale behind this syntax is
to create smaller diffs when commit-
ting the code to a VCS. With the final
comma, adding a new argument to a
function call (here, the sixth argument

4 Flexible Heredoc and Nowdoc Syntaxes:
https://phpa.me/php73-rc-flexdoc

is the secure argument, and should
always be used), will create a one-line
diff.

> 1,

instead of a two-line diff:

> "example.com",
> 1

Note that function definitions don’t
get that syntax.

More on this: Allow a trailing comma
in function calls5

Deprecated Case-insensitive

Constants

Constants defined with the define
function may be case-insensitive. This
behavior is now deprecated in PHP 7.3
and will be completely removed in PHP
8.0.

null, true and false are exempt-
ed from this deprecation. So are the
magic constants __function__ or __

TRAIT__, although it was not explicitly
mentioned in the RFC.

// This triggers an error in PHP 7.3
define('FOO', 1, true);

echo FOO;

// This triggers another error in PHP 7.3
echo foo;

Removing this support leads to
cleaner code in line with PHP common
usage. It also reduces complexity in the
PHP engine and prevents some bugs.

In a quick survey of 700 applications,
we found 2 percent of PHP applications
use case-insensitive constants. This

5 Allow a trailing comma in function calls:
https://phpa.me/php73-trailing-comma

feature was rarely used, yet, for those
who do, the impact shall be significant.

More on this: Deprecate and Remove
Case-Insensitive Constants6.

PCRE 2.0
PHP’s regex are based on an inde-

pendent library, called PCRE7. PHP has
been using the PCRE library for ages.
It has made its way to the core of PHP,
and can’t be disabled anymore. Yet, PHP
still uses the version 1.0 of the PCRE
library. It has been abandoned, and a
new version, PCRE2, was released in
2015. This new version is actively devel-
oped.

The change from PCRE 1 to 2 means
the API for the library has changed.
This only impacts internals, and Anatol
Belski did a great job an integrating this
new version in the heart of PHP.

As for userland code, the new version
means regex may be impacted. There
are several places where impact may be
felt:

• Modifier S8 is now on by default.
PCRE does some extra optimiza-
tion.

• Option X is disabled by default. It
makes PCRE do more syntax vali-
dation than before.

• Unicode 10 is used, while it was
Unicode 7. This means more emojis,
more characters, and more sets.
Unicode regex may be impacted.

• Some invalid patterns may be
impacted.

Since PHP doesn’t lint regex at lint-
ing time, the best is to do an inventory
of all the regex in use in the application
and test them with PHP 7.3 (aka, PCRE
2.0). You can see the regex inventory of
CodeIgniter9 here.

Then, using null as haystack, PHP
compiles the regex and reports any
error with a false and a warning. We
are running an arbitrary regex into

6 Deprecate and Remove Case-Insensitive
Constants: https://phpa.me/php73-ci-const

7 PCRE: https://www.pcre.org

8 Modifier S:
http://php.net/reference.pcre.pattern.modifiers

9 CodeIgniter:
https://phpa.me/exakat-regex-ci

Listing 2

 1. $value = 'something from somewhere';
 2.

 3. setcookie("TestCookie",

 4. $value,

 5. time()+3600,

 6. "/~rasmus/",

 7. "example.com",

 8. 1,

 9.);

Sam
ple

phparch.com
https://phpa.me/php73-rc-flexdoc
https://phpa.me/php73-trailing-comma
https://phpa.me/php73-ci-const
https://www.pcre.org
http://php.net/reference.pcre.pattern.modifiers
https://phpa.me/exakat-regex-ci

 www.phparch.com \ September 2018 \ 5

PHP 7.3 is On Track!

preg_match, and begging it to raise an error, which we can
suppress with an @.

// since we hunt for regex error, let's not log them
if (false === @preg_match($regex, null)) {
 print "$regex is an invalid regex in pcre\n. Error : "
 . error_get_last() . PHP_EOL;
}

More on this: PCRE2 migration10

SQLite 3.24
SQLite is another independent library embedded in PHP. It

now supports version 3.2411, which was released in June 2018.

This new version adds support for UPSERT. UPSERT is inspired
by the same command in PostgreSQL. An UPSERT is an ordi-
nary INSERT statement that is followed by the special ON
CONFLICT clause: if the row being inserted is not available
in the table, it is inserted. If it is already there, the insert is
turned into an UPDATE command.

This is close to the REPLACE command, which is already
available in SQLite. The main difference is the UPDATE
doesn’t have to change every column and may decide to
preserve some of them.

Here is an example, taken from the UPSERT12 documentation:

CREATE TABLE vocabulary(
 word TEXT PRIMARY KEY, count INT DEFAULT 1
);
INSERT INTO vocabulary(word) VALUES('jovial')
 ON CONFLICT(word) DO UPDATE SET count=count+1;

A word is inserted in the vocabulary table, and the column
count keeps track of the number of its insertions.

More on this: version 3.2413.

Json_encode May Throw Exceptions
PHP has two functions for dealing with JSON: json_

decode() and json_encode(). Unfortunately, they both return
null when an error happens while processing the data. Yet,
null is a possible valid result when decoding a JSON. For
example, the string "null" will be decoded into null (the
constant).

When decoding null is part of the business logic, there
is no other way than checking json_last_error() for errors
before continuing.

PHP 7.3 introduces a new option for the two functions:
JSON_THROW_ON_ERROR. This makes json_* throw an exception
when an error happens, and it may be cleanly caught with a
try/catch clause.

10 PCRE2 migration: https://wiki.php.net/rfc/pcre2-migration

11 version 3.24: https://www.sqlite.org/releaselog/3_24_0.html

12 UPSERT: https://www.sqlite.org/lang_UPSERT.html

13 version 3.24: https://www.sqlite.org/releaselog/3_24_0.html

14 JSON_THROW_ON_ERROR:
https://wiki.php.net/rfc/json_throw_on_error

try {
 $read = json_decode(
 $data, false, 512, JSON_THROW_ON_ERROR
);
} catch (JsonException $e) {
 echo "the incoming data are not valid json code\n";
}

The default behavior is to keep the old behavior, for back-
ward compatibility. It is recommended to make a call to
json_last_error() after calls to json_encode() and json_

decode().

More on this: JSON_THROW_ON_ERROR14.

array_first_key(), array_last_key()
Finding the first key of an array required some workaround

in PHP 7.2 and older. While it is easy to know what the first
element of an auto-generated list is, (hint: it is 0) it requires
some work to find the first key of an array.

Various workarounds are shown in Listing 3.

Starting in PHP 7.3, it is possible to use array_first_key()
to reach that value, without resetting the internal pointer, nor
starting a loop on the array.

The same applies to array_last_key(), which targets the last
element of an array. Solutions to that thorny problem were
even more creative than the previous (Listing 4).

Listing 3

 1. $array = ['a' = > 1, 'b' => 2, 'c' => 3];
 2.

 3. // solution 1 :

 4. reset($array);

 5. $key = key($array);
 6.

 7. // solution 2 :

 8. $key = array_keys($array)[0];
 9.

10. // solution 3 :

11. foreach($array as $key => $value) {

12. break 1;

13. }

Listing 4

 1. $array = ['a' = > 1, 'b' => 2, 'c' => 3];
 2.

 3. // solution 1 :

 4. reset($array);

 5. end($array);

 6. $key = key($array);
 7.

 8. // solution 2 :

 9. $key = array_keys($array)[count($array) - 1];
10.

11. // solution 3 :

12. foreach ($array as $key => $value) {

13. // Actually found in code...

14. }

Sam
ple

phparch.com
https://wiki.php.net/rfc/pcre2-migration
https://www.sqlite.org/releaselog/3_24_0.html
https://www.sqlite.org/lang_UPSERT.html
https://www.sqlite.org/releaselog/3_24_0.html
https://wiki.php.net/rfc/json_throw_on_error

6 \ September 2018 \ www.phparch.com

PHP 7.3 is On Track!

array_value_first() and array_value_last() were also part
of the RFC, but once the first and final key is found, its value
is one dereferencing away.

More on this: int the array_key_first, array_key_last, etc
RFC15

list() with References
PHP has had the list() function, and its short syntax

version []. Until PHP 7.3, it was not possible to assign refer-
ences with list(). This is now possible.

$array = [1, 2];
list($a, &$b) = $array;

This is the same as:

$array = [1, 2];
$a = $array[0];
$b =& $array[1];

// and also

[$a, &$b] = $array;

As usual, list() may be combined with foreach(). For
example, this will only set ‘c’ index to 7.

$array = [['c' => 1, 2], ['c' => 3, 4], ['c' => 5, 6]];
foreach ($array as list('c' => &$a, 1 => $b)) {
 $a = 7;
}
print_r($array);

More on this: list Reference Assignment16

is_countable()
This new function aims at identifying easily data that may

passed to count(). Since count() yields a warning if fed with
wrong data:

Parameter must be an array or an object
that implements Countable

is_countable() is here to provide protection. The function
is syntactic sugar: it replaces the following logical construct:

if (is_array($foo) || $foo instanceof Countable) {
 // $foo is countable
}

More on this: is_countable17

15 array_key_first, array_key_last, etc RFC:
https://wiki.php.net/rfc/array_key_first_last

16 list Reference Assignment:
https://wiki.php.net/rfc/list_reference_assignment

17 is_countable: https://wiki.php.net/rfc/is-countable

net_get_interfaces()
net_get_interfaces() is a new function which lists all

network interfaces. Until now, it was necessary to rely on
php_exec() to poke the system, then parse its results. Now,
net_get_interfaces() provides the same information in an
array, directly inside PHP. It has been ported to all available
OS, including Windows.

The result of a call to this function may look like Output 1.

More on this: getting ip for eth018

Removing image2wbmp()
image2wbmp() was removed from the PHP API. It is used to

produce WBMP pictures, and a twin function called imagewb-
mp(). The latter is still available in PHP 7.3.

This function was identified as a duplicate feature of

18 getting ip for eth0: https://bugs.php.net/bug.php?id=17400

Output 1

 1. Array

 2. (

 3. [lo0] => Array

 4. (

 5. [unicast] => Array

 6. (

 7. [0] => Array

 8. (

 9. [flags] => 32841

10. [family] => 18

11.)
12.

13. [1] => Array

14. (

15. [flags] => 32841

16. [family] => 30

17. [address] => ::1

18. [netmask] => ffff:ffff:ffff:ffff:

19.)
20.

21. [2] => Array

22. (

23. [flags] => 32841

24. [family] => 2

25. [address] => 127.0.0.1

26. [netmask] => 255.0.0.0

27.)
28.

29. [3] => Array

30. (

31. [flags] => 32841

32. [family] => 30

33. [address] => fe80::1

34. [netmask] => ffff:ffff:ffff:ffff::

35.)
36.

37.)
38.

See code archive for complete listing

Sam
ple

phparch.com
https://wiki.php.net/rfc/array_key_first_last
https://wiki.php.net/rfc/list_reference_assignment
https://wiki.php.net/rfc/is-countable
https://bugs.php.net/bug.php?id=17400

 www.phparch.com \ September 2018 \ 7

PHP 7.3 is On Track!

imagewbmp(), and removed. The later function is still available.

assert() is Now a Reserved Function
assert19 is already a PHP function. It belongs to the global

namespace and checks if an assertion is true (obvious, isn’t
it?). It is currently not possible to define an assert function
in the global namespace, since the native one is already there.

A problem arises when an assert function is created in a
namespace and is called as an unqualified name. Basically,
just like assert().

When disabling the assertions with zend.assertions=0
or assert_options20, PHP prevents any call to assert. This
includes namespaced assert, as the fully qualified name
is reduced to the bare minimum. assert is not a function
anymore, but a language construct, so reserving it is probably
a good idea.

More on this: Deprecations for PHP 7.321

Continue for Loops, Break for Switch
One may have noticed PHP has two very similar keywords:

continue and break. They both break a control flow structure,
and they actually may be used interchangeably. They should
have distinct usage, as explained by Nikita Popov in the RFC
related to this.

while ($foo) {
 switch ($bar) {
 case "baz":
 continue; // In PHP: Behaves like "break;"
 // In C: Behaves like "continue 2;"
 }
}

continue and break behave the same, while other languages,
such as C, make a distinction between the two. For example,
Drupal22 or TCPDF23 emits notice at linting time.

So, when a continue may be mistaken for a break, PHP 7.3
now emits this error: "continue" targeting switch is equiv-
alent to "break." Did you mean to use "continue 2"?.

More on this: Deprecate and remove continue targeting
switch24

Monotonic Timer: hrtime()
We all have relied on date() and time() to tell us the date

and time of the present moment. When measuring elapsed
time, that is, the amount of time between two moments,

19 assert: http://php.net/assert

20 assert_options: http://php.net/function.assert-options

21 Deprecations for PHP 7.3:
https://wiki.php.net/rfc/deprecations_php_7_3

22 Drupal: https://phpa.me/drupal-86-break

23 TCPDF: https://phpa.me/tcpdf-break

24 Deprecate and remove continue targeting switch:
https://phpa.me/php73-switch-depr

microtime(true) is often used. microtime() returns the time
of the day, with the microseconds. As soon as a difference
is made between two microtime() calls, a bug is waiting to
happen.

microtime() is based on the internal system clock, and the
assumption is the clock will only go on, at least until 2037.
Many events may impact the internal clock—daylight saving
time changing (twice a year), leap seconds (27 times since
1970), and manual reconfiguration of the clock.

PHP 7.3 introduces hrtime(). It is a monotonic timer. It’s a
timer, as it behaves like microtime() and provides an ultra-pre-
cise representation of the time: either an array with seconds
and microseconds, or a large integer.

print_r(hrtime(true));
print PHP_EOL;
print_r(hrtime());

This displays :

828536158380710
Array
(
 [0] => 828536
 [1] => 158403415
)

You may consider hrtime() as a modern version of micro-
time(). Any time difference should be done with hrtime(),
while microtime() may be reserved for displaying the actu-
al time. In fact, hrtime() starts counting at some uncertain
point in the past. On the other hand, hrtime() is not affected
by any variation of the internal clock.

More on this: High resolution monotonic timer #297625
and Monotonic Clocks—the Right Way to Determine Elapsed
Time26

compact() Reports Undefined Variables
compact() is a convenient function which converts a list of

variable names into an array.

$foo = 'bar';

$array = compact('foo', 'foz');
// ['foo' => 'bar'];

Until now, compact() would silently ignore undefined vari-
ables. It was up to the developer to check if the array was fully
built, or send it to the next method without checking. Those
days are gone.

compact() is heavily used with templating engines. This new
feature may raise a large number of notices. It is recommend-
ed to check the logs in production and adapt the code. At

25 High resolution monotonic timer #2976:
https://github.com/php/php-src/pull/2976

26 Monotonic Clocks—the Right Way to Determine Elapsed Time:
https://phpa.me/softwariness-monotonic-clocks

Sam
ple

phparch.com
http://php.net/assert
http://php.net/function.assert-options
https://wiki.php.net/rfc/deprecations_php_7_3
https://phpa.me/drupal-86-break
https://phpa.me/tcpdf-break
https://phpa.me/php73-switch-depr
https://github.com/php/php-src/pull/2976
https://phpa.me/softwariness-monotonic-clocks

a php[architect] guide

Discover how to secure your

applications against many of the

vulnerabilities exploited by attackers.

Security is an ongoing process not something to add
right before your app launches. In this book, you’ll
learn how to write secure PHP applications from fi rst
principles. Why wait until your site is attacked or your
data is breached? Prevent your exposure by being aware
of the ways a malicious user might hijack your web site or
API.

Security Principles for PHP Applications is a comprehensive guide.
Th is book contains examples of vulnerable code side-by-side with
solutions to harden it. Organized around the 2017 OWASP Top Ten
list, topics cover include:

• Injection Attacks

• Authentication and Session Management

• Sensitive Data Exposure

• Access Control and Password Handling

• PHP Security Settings

• Cross-Site Scripting

• Logging and Monitoring

• API Protection

• Cross-Site Request Forgery

• ...and more.

Written by PHP professional Eric Mann, this book builds on his
experience in building secure, web applications with PHP.

Order Your Copy
http://phpa.me/security-principles

Sam
ple

http://phpa.me/security-principles

 www.phparch.com \ September 2018 \ 9

PHP 7.3 is On Track!

worse, you may revert to the old behav-
ior by using the @ operator.

More on this: Make compact function
reports undefined passed variables27

Migration to PHP 7.3
With all those new features and

incompatibilities, how do you prepare
for the newest PHP version?

Figure 1 is a summary of the features,
and their impact on your code.

There are three ways to get your code
ready: prepare your code, review situ-
ations that may benefit from upgrades,
or just wait for PHP 7.3.

Getting Ready for PHP 7.3
Getting ready means removing every

incompatibility between the current
code and the new version. For example,
you can prepare for PCRE2 by collect-
ing all your regex and linting them with
PHP 7.3’s regex engine. That will tell
you if they are compatible or not.

On the other hand, there is not
much to prepare for SQLite 3.24, since
the main evolution is a new feature
(UPSERT). The “recommendations”
column indicates we can search now for
portions of code that will benefit from
the new version, such as is_countable().
You’ll have to wait after the new version
to actually start using them, or rely on
a compatibility library that will emulate
those functions until then. Symfony
provides a polyfill for PHP 7.328, which
at the moment only has an is_countable
implementation but may have more
to come now that the feature freeze is
done. In any way, this will be a job for
after the big migration.

Migrating Then Downgrading
Finally, the table in Figure 1 also

reports backward incompatibilities
introduced by the new features of PHP
7.3. After the code has been migrated,
you’ll be able to adopt new features,
such as the trailing comma, or even,

27 Make compact function
reports undefined passed variables:
https://wiki.php.net/rfc/compact

28 polyfill for PHP 7.3:
https://phpa.me/symfony-php73-polyfill

totally automati-
cally, the improved
Garbage Collec-
tor. All of them
will make any fall-
back to PHP 7.2
hard or impossi-
ble, as those new
features won’t
compile with
older versions.
So, once you have
migrated to PHP
7.3, think twice
before adopting
a new feature,
which may break your application’s
backward compatibility.

Static Analysis for the Review
The final column indicates if stat-

ic analysis is able to review, report, or
recommend a feature. Tools like Exakat
are already working on PHP 7.3-dev
and review efficiently code for migra-
tion. It proofreads the code well beyond
what the lint is capable of, and can
direct your attention to the most inter-
esting parts of the code. Migrating to a
new PHP version is a good moment to
add them to your tool belt.

While We’re Waiting for
December

PHP 7.3 is forecast for December
13th. Until then, it is important to keep

checking that your code meets this new
version. There are several steps you can
take which will help you and the PHP
community:

• download PHP 7.3 from GitHub29
and build it

• lint your code with php -l, just to
check the syntax

• run a static analysis tool, such as
Exakat30, to review all issues

• run your test suite

• report bugs to PHP Bugs31

29 GitHub: https://github.com/php/php-src/

30 Exakat: https://www.exakat.io

31 PHP Bugs: https://bugs.php.net

 Damien Seguy is CTO at Exakat Ltd., a company special-
ized in PHP code quality solutions for the industry. He leads
development of the exakat PHP static analysis engine that
automatically audit code for version compatibility, security
and auto-documentation. Since last millenium, Damien has
contributed to PHP, as documentation author, elephpant
breeder, conference speaker on every continents. He also enjoys
machine learning, gremlin, 狮子头 and camembert. @exakat

Figure 1

Related Reading

• finally{}: Innovation in PHP by Eli White. May 2018.
https://phparch.com/magazine/2018-2/may/

• Community Corner: The Imminent Release of PHP 7.2
by James Titcumb. October 2017.
https://phparch.com/magazine/2017-2/october/

Sam
ple

phparch.com
https://wiki.php.net/rfc/compact
https://phpa.me/symfony-php73-polyfill
https://github.com/php/php-src/
https://www.exakat.io
https://bugs.php.net
https://twitter.com/exakat
https://phparch.com/magazine/2018-2/may/
https://phparch.com/magazine/2017-2/october/

http://phpa.me/mag_subscribe

	Table of Contents
	MagniPHPecent 7.3
	Oscar Merida

	How Long Will It Take?
	Chris Tankersley

	Professional Paranoia: Thinking Like an Attacker
	Eric Mann

	Describe Your Tests with Kahlan
	Joe Ferguson

	Finding the Perfect Development Job
	James Titcumb

	Producer-Consumer Programming
	Edward Barnard

	August Happenings
	The Seven Deadly Sins of Programming: Pride
	Eli White

	PHP 7.3 is On Track!
	Damien Seguy

	Upgrading Old Legacy Apps to PHP 7 and Beyond
	Sammy Kaye Powers

	Using the Symfony Workflow Component as a State Machine for Ecommerce
	Michelle Sanver

