
www.phparch.com

Generics

and Project

Success

The Dev Lead Trenches:

The Talk

Community Corner:

Leveling up

The Workshop:

Producing Packages,

Part Two

Security Corner:

Five Risks to Look for

In a Code Review

Education Station:

The Day the Internet Died

finally{}:

The Seven Deadly Sins of

Programming: Sloth

A
L

S
O

 I
N

S
ID

E

The Case for Generics
in PHP

Maintaining Laravel
Applications

How to Knock Down
Any Project in Ten Steps

Getting Started With
Php? Let’s Start the
Right Way!

November 2018

Volume 17 - Issue 11

Oscar
Free Sample

C

M

Y

CM

MY

CY

CMY

K

automattic_full-pg.pdf 1 10/17/18 10:12 AM

https://automattic.com/jobs

Take online payments with Square.

Checkout our our PHP SDK and

integrations with Magento, WooCommerce,

Drupal Ca�, and more.

square.com/developer

http://square.com/developer

 www.phparch.com \ November 2018 \ 3

The Case for Generics in PHPFEATURE

The Case for Generics in PHP
Chris Holland

In 2016, Ben Scholzen and Rasmus Schultz published their PHP RFC: Generic Types and

Functions1, aka The Generics RFC.

Having worked with generics in other languages, I was very grateful and thrilled to come

across this RFC, as I could immediately see the tremendous benefits this would bring to the

PHP ecosystem.

1 PHP RFC: Generic Types and Functions:
https://wiki.php.net/rfc/generics

2 Java J2SE 5.0: https://phpa.me/wikip-java-generics

3 C# 2.0: https://phpa.me/microsoft-c-generics

4 generic programming: https://phpa.me/wikip-generic-programming

With this said, the benefits of generics can be difficult to
understand without having worked with them.

To elucidate their merit, we will look at how they might
fit within the evolution of PHP’s type system to put us in a
position to write more robust software:

“How can I signal that my method will return a Collection
of User objects? And why would I want to do that?”

Generics In Other Languages
Generics were introduced in Java J2SE 5.02 in 2004. An

example would look like this:

List<String> v = new ArrayList<String>();
v.add("test");
// compilation-time type error
Integer i = v.get(0);

Generics were introduced in C# 2.03 in 2005.

With this said, generic programming4 can be traced as far
back as 1973 with the ML programming language.

1. Languages supporting generics include Ada, C#, Delphi,
Eiffel, F#, Java, Rust, Swift, TypeScript, and Visual Basic
.NET.

2. Languages supporting parametric polymorphism include
ML, Scala, Haskell, and Julia.

3. C++ and D support templates.

PHP’S Type System
Consider the example in Listing 1 in PHP 5.6.

Defining type system is no easy task. For example, Ruby
describes its type system as being “dynamic” and “loosely
typed,” but they don’t allow you to put return types on
methods, or types on method arguments, which is really
like not having a type system at all.

What are currently referred to in PHP as type hints are
more than that: they’re contracts enforced by the compil-
er; it’s just that they are optional. But if you do use them,
they are enforced in a helpful way. The very bare mini-
mum requirement for even claiming to have a type system
is to be able to define types on method arguments and
method returns, which we have in PHP 7.

A type system allows us to enforce the correctness of a
program, in terms of specifying the accepted inputs and
outputs.

From the above example, the following will fail:

$registration = new UserRegistrationService(new Duck());
// Fails. I passed a Duck when it expected a UserRepository
// PHP will clearly signal to me that I passed a Duck
// to something that expected a UserRepository

Why does this matter? If I were to remove UserRepository
from the UserRegistrationService constructor’s method
signature, I would not know I did something wrong until later
when invoking the createUser() method. It would then try to
call some method named saveUser on a Duck, and this method
may or may not exist, but we won’t know that until the code
is executed.

Listing 1

 1. <?php
 2.

 3. public class UserRegistrationService

 4. {

 5. private $userRepo;
 6.

 7. public function __construct (UserRepository $userRepo)

 8. {

 9. $this->userRepo = $userRepo;

10. }
11.

12. public function createUser($firstName, $lastName)

13. {

14. $newUser = new User($firstName, $lastName);

15. return $this->userRepo->saveUser($newUser);

16. }

17. }

Sam
ple

phparch.com
https://wiki.php.net/rfc/generics
https://phpa.me/wikip-java-generics
https://phpa.me/microsoft-c-generics
https://phpa.me/wikip-generic-programming

4 \ November 2018 \ www.phparch.com

The Case for Generics in PHP

If a system is going to fail, it is more helpful for the system
to fail earlier than later. Leveraging a language’s type system
puts us in a position to do just that. Before we run our code,
static analyzers or even our code editors could highlight
potential errors.

Similar advantages can be derived from method return
types and class property types.

The evolution of PHP’s type system could be summarized
as follows:

1. PHP 5 gave us optional types for classes, interfaces, and
callables on method arguments.

2. PHP 7 introduced scalar types on method arguments and
gave us optional method return types.

3. PHP 7.4 is currently slated to support optional types on
class properties

It is important to note, as of this writing, PHP’s type system
has always been optional, and will likely continue to be. This
reduces compatibility issues while promoting adoption. You
can gradually add types to function signatures and then,
hopefully, remove a lot of boilerplate code from your func-
tions which checks argument types.

With PHP 7.4, the earlier example might look like Listing 2.

The Need for Generics
So what’s the deal with Generics? Let’s start with another

example.

class UserLookupService
{
 // ...
 public function getUsersByDepartmentName(
 string $departmentName
) {
 return $this->userRepo
 ->getByDepartment($departmentName);
 }
}

As the method name indicates, we want to return a list of
users. How would I signal this in the method signature? As
of PHP 7, there isn’t a way for me to natively signal “This
method must return an array of user objects”. I can do it with
an annotation and hope my IDE will enforce this behavior
throughout the system, see Listing 3.

Collections of Things

There are richer ways to express such collections beyond
a primitive array. The Doctrine ORM provides us with an
ArrayCollection class. It exposes a set of helpful methods to
iterate through and manipulate members of a Collection.

Without generics, if I wished to enforce homogenous
ArrayCollections, I might resort to a less-than-elegant hack
as in Listing 4.

Listing 2

 1. <?php
 2.

 3. namespace Foo;
 4.

 5. class UserRegistrationService

 6. {

 7. // Class Property Type: Future PHP 7.4

 8. private UserRepository $userRepo;
 9.

10. // Using Argument Type (class): Since PHP 5

11. public function __construct(UserRepository $userRepo) {

12. $this->userRepo = $userRepo;

13. }
14.

15. // Uses Method Return Type: Since PHP 7

16. public function createUser(string $firstName,

17. string $lastName): User {

18. $newUser = new User($firstName, $lastName);

19. return $this->userRepo->saveUser($newUser);

20. }

21. }

Listing 3

 1. class UserLookupService

 2. {

 3. // ...

 4. /**

 5. * @return User[] //<-- this is me using an annotation as a crutch.

 6. */

 7. public function getUsersByDepartmentName(string $departmentName)

 8. {

 9. return $this->userRepo

10. ->getByDepartment($departmentName);

11. }

12. }

Listing 4

 1. <?php
 2.

 3. class UserArrayCollection extends ArrayCollection

 4. {

 5. public function addUser(User $user) {

 6. parent::add($user);

 7. }
 8.

 9. public function nextUser(): User {

10. return parent::next();

11. }

12. }Sam
ple

phparch.com

 www.phparch.com \ November 2018 \ 5

The Case for Generics in PHP

I could also make a DuckArrayCollection (Listing 5).

Every time I wish to have an ArrayCollection of homog-
enous items, I have to make a new ArrayCollection class to
enforce this contract. This would allow me to write the code
in Listing 6.

Generics to the Rescue

My ultimate wish would be to signal that the method would
return “an ArrayCollection of User objects” without creating
a new child class for every type of object I might return. It’s
an ArrayCollection whose members are only allowed to be
instances of the User class. Here’s a possible evolution of the
previous example.

public class UserLookupService
{
 public function getUsersByDepartmentName(
 string $departmentName) : ArrayCollection[User]
 {
 return $this->userRepo
 ->getByDepartment($departmentName);
 }
}

What I wish I could do is this:

class UserLookupService
{
 // ...
 public function getUsersByDepartmentName(
 string $departmentName) : User[] //<-- Not valid
 {
 return $this->userRepo
 ->getByDepartment($departmentName);
 }
}

The brackets syntax is common in many languages to desig-
nate arrays, but this isn’t what we’re working with here. In the
end, what we are trying to define is a composite type. It’s an
object of a given type—ArrayCollection—made of objects of
another type—User.

The Generics RFC’s proposed syntax for this would be:

ArrayCollection<User>

Applying Generics
The collections examples look tedious. Generics would

allow us to remove this tedium, as in Listing 7.

The letter T acts as a placeholder for whichever type I need
to bind my GenericArrayCollection, and this binding happens
at instantiation.

$duckCollection = new GenericArrayCollection<Duck>();

From here on, the add method will only accept a Duck. And
the next method is guaranteed to only ever return an instance
of Duck.

Based on the above examples, from this single
GenericArrayCollection class, I can now write Listing 8.

With this generics syntax, our UserLookupService class
could now look like Listing 9.

With the above example, we are now guaranteeing the
method would always return a collection of User objects.

Listing 5

 1. <?php
 2.

 3. class DuckArrayCollection extends ArrayCollection

 4. {

 5. public function addDuck(Duck $duck) {

 6. parent::add($duck);

 7. }
 8.

 9. public function nextDuck(): Duck {

10. return parent::next();

11. }

12. }

Listing 6

 1. // type-specific collection class for "User"

 2. $users = new UserArrayCollection();
 3.

 4. // this is fine

 5. $users->addUser(new User());
 6.

 7. // this breaks, as intended

 8. $users->addUser(new Duck());
 9.

10. // type-specific collection class for "Duck"

11. $ducks = new DuckArrayCollection();
12.

13. // this is fine

14. $ducks->addDuck(new Duck());
15.

16. // this breaks, as intended

17. $ducks->addDuck(new User());

Listing 7

 1. <?php
 2.

 3.

//don't extend ArrayCollection, re-implement from scratch

 4. class GenericArrayCollection<T>

 5. {

 6. public function add(T $element) {

 7. $this->elements[] = $element;

 8. return true;

 9. }
10.

11. public function next(): T {

12. return next($this->elements);

13. }

14. }Sam
ple

phparch.com

6 \ November 2018 \ www.phparch.com

The Case for Generics in PHP

This would help IDEs enforce proper
behavior in their static analysis while
providing deeper auto-completion.

Without even using an IDE, PHP
would throw helpful errors as soon as
it parses the getUsersByDepartmentName
method. Should its contents attempt to
return anything but a collection of User
objects, PHP would immediately tell us
that what we’re trying to do is incom-
patible with the method signature.

This is preferable to encoun-
tering an error upon system
execution while running logic invoking the
getUsersByDepartmentName method. It
would break in unforeseen ways when
faced with a stray Duck within what it
otherwise expects to be a collection of
Users.

Enforcing homogeneous collections
tends to be the first and most popular
use-case for generics, but they are appli-
cable to unlimited use-cases, some of
which include:

• HashMap<K, V> as an
object-oriented abstraction-lay-
er for PHP’s associative arrays:
https://phpa.me/javase8-hashmap

• object caching APIs

• worker queues

In these use-cases, systems will be
made more robust from clearly signal-
ing what types of objects are to be
used as inputs and outputs, such that,
a returned cached object might be
contractually obligated to be a User, and
not a Duck, for example.

Beyond those examples, we might
organically come across a need to
leverage generics whenever we find
ourselves using mixed as the return type,
or the argument type of a method.

Typically, our intention is a given
instance of our class should only interact
with objects of the same type. Our class
might not care as to what that specific
type might be, it just knows throwing
mixed types at the same instance would
result in disaster. Generics help re-en-
force this expectation.

Is PHP Turning Into Java?
(Or Language X)

As mentioned above, the concept of
Generic Programming predates Java
by decades, and so do type systems5 in
general.

Learning the strengths of other
languages and adopting some of their
more useful features will help keep PHP
a competitive ecosystem while making
itself more attractive to developers
from other ecosystems.

For example, one of my first hires in
our Austin office is a Software Engi-
neer with little previous exposure
to PHP, but had significant experi-
ence building systems with C#, using

5 type systems:
https://en.wikipedia.org/wiki/Type_system

Test-Driven Development and applying
best practices of object-oriented design.
Working in PHP wasn’t much of a
hurdle, because in the end, it all came
down to familiar constructs: interfaces,
abstract classes, classes, and private/
protected/public member variables and
methods.

Generics are just one more construct
leveraged by many software engineers
across various ecosystems, who might
be attracted to another language with a
well-evolved type system.

Listing 8

 1. //generic-type collection class

 2. $users = new GenericArrayCollection<User>();
 3.

 4. //this is fine

 5. $users->add(new User());
 6.

 7. //this breaks, as intended

 8. $users->add(new Duck());
 9.

10. //$nextUser is guaranteed to be a User object.

11. $nextUser = $users->next();
12.

13. //generic-type collection class

14. $ducks = new GenericArrayCollection<Duck>();
15.

16. //this is fine

17. $ducks->add(new Duck());
18.

19. //this breaks, as intended

20. $ducks->add(new User());
21.

22. //$nextDuck is guaranteed to be a Duck object

23. $nextDuck = $ducks->next();

Listing 9

 1. public class UserLookupService

 2. {

 3. public function getUsersByDepartmentName(string $departmentName)

 4. : ArrayCollection<User>

 5. {

 6. return $this->userRepo

 7. ->getByDepartment($departmentName);

 8. }

 9. }

Sam
ple

phparch.com
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://en.wikipedia.org/wiki/Type_system

 www.phparch.com \ November 2018 \ 7

The Case for Generics in PHP

Tinkering with Generics
If you wish to try your hand at learning how to use

Generics even before a proper syntax is introduced into
PHP, you might consider tinkering with Daniel Labarge’s
experimental library to achieve roughly-similar behavior:
https://github.com/artisansdk/generic

While the syntax and error signaling won’t be as robust and
powerful as natively-implemented generics, Labarge’s frame-
work should help illustrate generics behavior and some of its
benefits.

Head over to GitHub to follow the current Generics RFC6.

In Conclusion
The Generics RFC may have been a bit ahead of its time to

truly get the traction it deserved. Generic types only make
sense in languages where a type system is pervasively used,
and their type system is fully-featured.

With the adoption of typed properties, PHP 7.4’s roadmap
is about to get us there.

As PHP’s type system evolves and matures, and its adop-
tion increases in modern software systems, generics would
provide a richer vocabulary to build more robust systems
with reduced code-duplication.

6 Generics RFC: https://phpa.me/php-generics-rfc

 Chris Holland leads a small Software
Engineering Team at an HR company.
Throughout a career spanning more than 20
years, Chris has held Sr. Engineering and
Leadership roles for small and large
successful publicly-traded companies such as
EarthLink and Internet Brands, serving
business models across Content, Commerce,
Travel, and Finance on a wide variety of
technology stacks including PHP/LAMP,
Java/J2EE and C#/.Net, catering to audi-
ences over 100 million monthly visitors.
@chrisholland

Related Reading

• PHP 7.3 is On Track! by Damien Seguy.
September 2018.
https://phparch.com/magazine/2018-2/september/

• Testing Strategy With the Help of Static Analysis
by Ondrej Mirtes. April 2018.
https://phparch.com/magazine/2018-2/april/

• Evolving PHP by Chris Pitt. March 2018.
https://phparch.com/magazine/2018-2/march/

OSMI Mental Health in Tech Survey

Take our 20 minute survey to give us

information about your mental health

experiences in the tech industry. At the

end of 2018, we’ll publish the results

under Creative Commons licensing.

Take the survey: https://osmihelp.org/research
Sam

ple

phparch.com
https://github.com/artisansdk/generic
https://phpa.me/php-generics-rfc
https://twitter.com/chrisholland
https://phparch.com/magazine/2018-2/september/
https://phparch.com/magazine/2018-2/april/
https://phparch.com/magazine/2018-2/march/
https://osmihelp.org/research

http://phpa.me/mag_subscribe

	The Case for Generics in PHP
	Chris Holland

